Consider n identical Kuramoto oscillators on a random graph. Specifically, consider Erdős–Rényi random graphs in which any two oscillators are bidirectionally coupled with unit strength, independently and at random, with probability 0p1. We say that a network is globally synchronizing if the oscillators converge to the all-in-phase synchronous state for almost all initial conditions. Is there a critical threshold for p above which global synchrony is extremely likely but below which it is extremely rare? It is suspected that a critical threshold exists and is close to the so-called connectivity threshold, namely, plog(n)/n for n1. Ling, Xu, and Bandeira made the first progress toward proving a result in this direction: they showed that if plog(n)/n1/3, then Erdős–Rényi networks of Kuramoto oscillators are globally synchronizing with high probability as n. Here, we improve that result by showing that plog2(n)/n suffices. Our estimates are explicit: for example, we can say that there is more than a 99.9996% chance that a random network with n=106 and p>0.01117 is globally synchronizing.

1.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
(
1967
).
2.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
1980
).
3.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
1984
).
4.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
,
1645
(
1990
).
5.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
(
1994
).
6.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
7.
S.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Hyperion
,
2003
).
8.
F.
Dörfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
,
1539
(
2014
).
9.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
10.
F. A.
Rodrigues
,
T. K. D. M.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
(
2016
).
11.
D. M.
Abrams
,
L. M.
Pecora
, and
A. E.
Motter
, “
Introduction to focus issue: Patterns of network synchronization
,”
Chaos
26
,
094601
(
2016
).
12.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
Del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
2018
).
13.
M. H.
Matheny
,
J.
Emenheiser
,
W.
Fon
,
A.
Chapman
,
A.
Salova
,
M.
Rohden
,
J.
Li
,
M. H.
de Badyn
,
M.
Pósfai
,
L.
Duenas-Osorio
,
M.
Mesbahi
,
J. P.
Crutchfield
,
M. C.
Cross
,
R. M.
D’Souza
, and
M. L.
Roukes
, “
Exotic states in a simple network of nanoelectromechanical oscillators
,”
Science
363
,
eaav7932
(
2019
).
14.
G.
Csaba
and
W.
Porod
, “
Coupled oscillators for computing: A review and perspective
,”
Appl. Phys. Rev.
7
,
011302
(
2020
).
15.
C. W.
Wu
, “
Graph coloring via synchronization of coupled oscillators
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
45
,
974
(
1998
).
16.
A.
Novikov
and
E.
Benderskaya
, “Oscillatory network based on Kuramoto model for image segmentation,” in Proceedings of the 13th International Conference on Parallel Computing Technologies (Springer, 2015), Vol. 9251, p. 210.
17.
S.
Steinerberger
, “Max-cut via Kuramoto-type oscillators,” arXiv:2102.04931 (2021).
18.
S.
Ling
,
R.
Xu
, and
A. S.
Bandeira
, “
On the landscape of synchronization networks: A perspective from nonconvex optimization
,”
SIAM J. Optim.
29
,
1879
(
2019
).
19.
R.
Taylor
, “
There is no non-zero stable fixed point for dense networks in the homogeneous Kuramoto model
,”
J. Phys. A: Math. Theor.
45
,
055102
(
2012
).
20.
J.
Lu
and
S.
Steinerberger
, “
Synchronization of Kuramoto oscillators in dense networks
,”
Nonlinearity
33
,
5905
(
2020
).
21.
M.
Kassabov
,
S. H.
Strogatz
, and
A.
Townsend
, “
Sufficiently dense Kuramoto networks are globally synchronizing
,”
Chaos
31
,
073135
(
2021
).
22.
P.
Erdős
and
A.
Rényi
, “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci.
5
,
1
(
1960
).
23.
A.
Jadbabaie
,
N.
Motee
, and
M.
Barahona
, “On the stability of the Kuramoto model of coupled nonlinear oscillators,” in Proceedings of 2004 American Control Conference (IEEE, 2004), Vol. 5, p. 4296.
24.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
, “
The size of the sync basin
,”
Chaos
16
,
015103
(
2006
).
25.
Z.
Füredi
and
J.
Komlós
, “
The eigenvalues of random symmetric matrices
,”
Combinatorica
1
,
233
(
1981
).
26.
V. H.
Vu
, “
Spectral norm of random matrices
,”
Combinatorica
27
,
721
(
2007
).
27.
M.
Barahona
and
L. M.
Pecora
, “
Synchronization in small-world systems
,”
Phys. Rev. Lett.
89
,
054101
(
2002
).
28.
G. S.
Medvedev
, “
Small-world networks of Kuramoto oscillators
,”
Physica D
266
,
13
(
2014
).
29.
G. S.
Medvedev
and
X.
Tang
, “
Stability of twisted states in the Kuramoto model on Cayley and random graphs
,”
J. Nonlinear Sci.
25
,
1169
(
2015
).
30.
G. S.
Medvedev
and
X.
Tang
, “
The Kuramoto model on power law graphs: Synchronization and contrast states
,”
J. Nonlinear Sci.
30
,
2405
(
2020
).
31.
H.
Chiba
,
G. S.
Medvedev
, and
M. S.
Mizuhara
, “
Bifurcations in the Kuramoto model on graphs
,”
Chaos
28
,
073109
(
2018
).
32.
H.
Daido
, “
Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators
,”
Prog. Theor. Phys.
88
,
1213
(
1992
).
33.
J. C.
Perez
and
F.
Ritort
, “
A moment-based approach to the dynamical solution of the Kuramoto model
,”
J. Phys. A: Math. Gen.
30
,
8095
(
1997
).
34.
Y.
Terada
and
Y. Y.
Yamaguchi
, “
Linear response theory for coupled phase oscillators with general coupling functions
,”
J. Phys. A: Math. Gen.
53
,
044001
(
2020
).
35.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
(
John Hopkins University Press
,
2013
).
36.
J. A.
Tropp
, “An introduction to matrix concentration inequalities,” arXiv:1501.01571 (2015).
37.
U.
Feige
and
E.
Ofek
, “
Spectral techniques applied to sparse random graphs
,”
Random Struct. Algorithms
27
,
251
(
2005
).
38.
J.
Lei
and
A.
Rinaldo
, “
Consistency of spectral clustering in stochastic block models
,”
Ann. Stat.
43
,
1
(
2015
).
You do not currently have access to this content.