Shoot apical meristems (SAMs) give rise to all above-ground tissues of a plant. Expansion of meristematic tissue is derived from the growth and division of stem cells that reside in a central zone of the SAM. This reservoir of stem cells is maintained by expression of a transcription factor WUSCHEL that is responsible for the development of stem cells in the central zone. WUSCHEL expression is self-activating and downregulated by a signaling pathway initiated by CLAVATA proteins, which are upregulated by WUSCHEL. This classic activator–inhibitor network can generate localized patterns of WUSCHEL activity by a Turing instability provided certain constraints on reaction rates and diffusion constants of WUSCHEL and CLAVATA are satisfied, and most existing mathematical models of nucleation and confinement of stem cells in the SAM rely on Turing's mechanism. However, Turing patterns have certain properties that are inconsistent with observed patterns of stem cell differentiation in the SAM. As an alternative mechanism, we propose a model for stem cell confinement based on a bistable-switch in WUSCHEL–CLAVATA interactions. We study the bistable-switch mechanism for pattern formation in a spatially continuous domain and in a discrete cellularized tissue in the presence of a non-uniform field of a rapidly diffusing hormone. By comparing domain formation by Turing and bistable-switch mechanisms in these contexts, we show that bistable switching provides a superior account of nucleation and confinement of the stem cell domain under reasonable assumptions on reaction rates and diffusion constants.

1.
R. J.
Field
and
M.
Burger
,
Oscillations and Traveling Waves in Chemical Systems
(
Wiley-Interscience
,
New York
,
1985
).
2.
P.
Gray
and
S. K.
Scott
,
Chemical Oscillations and Instabilities: Non-Linear Chemical Kinetics
(
Oxford Univ. Press
,
Oxford
,
1990
).
3.
I. R.
Epstein
and
J. A.
Pojman
,
An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
(
Oxford Univ. Press
,
New York
,
1998
).
4.
B. P.
Belousov
, “
Periodically acting reaction and its mechanism
,” in
Sbornik Referatov Po Radiotsionnoi Meditsine
(Medgiz, Moscow,
1959
), p.
145
.
5.
A. M.
Zhabotinsky
, “
Periodical process of oxidation of malonic acid solution
,”
Biofizika
9
,
306
311
(
1964
).
6.
W.
Geiseler
and
H. H.
Follner
, “
Three steady state situation in an open chemical reaction system I
,”
Biophys. Chem.
6
,
107
115
(
1977
).
7.
W.
Geiseler
and
K.
Bar-Eli
, “
Bistability of the oxidation of cerous ions by bromate in a stirred flow reactor
,”
J. Chem. Phys.
85
,
908
914
(
1981
).
8.
K. G.
Coffman
,
W. D.
McCormick
,
Z.
Noszticzius
,
R. H.
Simoyi
, and
H. L.
Swinney
, “
Universality, multiplicity, and the effect of iron impurities in the Belousov-Zhabotinskii reaction
,”
J. Chem. Phys.
86
,
119
129
(
1987
).
9.
A. N.
Zaikin
and
A. M.
Zhabotinsky
, “
Concentration wave propagation in two-dimensional liquid-phase self-oscillating system
,”
Nature
225
,
535
537
(
1970
).
10.
A. T.
Winfree
, “
Spiral waves of chemical activity
,”
Science
175
,
634
636
(
1972
).
11.
A. T.
Winfree
, “
Scroll-shaped waves of chemical activity in three dimensions
,”
Science
181
,
937
939
(
1973
).
12.
A.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. B
237
,
37
72
(
1952
).
13.
I.
Prigogine
, “
Time, structure and fluctuations
,”
Science
201
,
777
785
(
1978
).
14.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations
(
Wiley
,
New York
,
1977
).
15.
G.
Nicolis
, “
Stability and dissipative structures in open systems far from equilibrium
,” in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
John Wiley & Sons
,
New York
,
1971
), Vol. 19, pp.
209
324
.
16.
I.
Prigogine
and
R.
Lefever
, “
Symmetry-breaking instabilities in dissipative systems
,”
J. Chem. Phys.
48
,
1695
1700
(
1968
).
17.
A.
Goldbeter
and
R.
Lefever
, “
Dissipative structures for an allosteric model. Application to glycolytic oscillations
,”
Biophys. J.
12
,
1302
1315
(
1972
).
18.
J. S.
Griffith
, “
Mathematics of cellular control processes. I. Negative feedback to one gene
,”
J. Theor. Biol.
20
,
202
208
(
1968
).
19.
J. S.
Griffith
, “
Mathematics of cellular control processes. II. Positive feedback to one gene
,”
J. Theor. Biol.
20
,
209
216
(
1968
).
20.
J.
Higgins
, “
Theory of oscillating reactions
,”
Ind. Eng. Chem.
59
,
18
62
(
1967
).
21.
B.
Chance
,
A. K.
Ghosh
,
E. K.
Pye
, and
B.
Hess
, in
Biological and Biochemical Oscillators
(
Academic Press
,
New York
,
1973
).
22.
B.
Chance
,
B.
Hess
, and
A.
Betz
, “
DPNH oscillations in a cell-free extract of S. carlsbergensis
,”
Biochem. Biophys. Res. Commun.
16
,
182
187
(
1964
).
23.
B.
Hess
and
A.
Boiteux
, “
Mechanisms of glycolytic oscillation in yeast, I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillations
,”
Hoppe Seyler’s Z. Physiol. Chem.
349
,
1567
1574
(
1968
).
24.
H.
Degn
, “
Bistability caused by substrate inhibition of peroxidase in an open reaction system
,”
Nature
217
,
1047
1050
(
1968
).
25.
H.
Degn
, “
Compound 3 kinetics and chemiluminescence in oscillatory oxidation reactions catalyzed by horseradish peroxidase
,”
Biochim. Biophys. Acta
180
,
271
290
(
1969
).
26.
H.
Degn
and
D.
Mayer
, “
Theory of oscillations in peroxidase catalyzed oxidation reactions in open system
,”
Biochim. Biophys. Acta
180
,
291
301
(
1969
).
27.
G.
Gerisch
,
D.
Malchow
,
W.
Roos
, and
U.
Wick
, “
Oscillations of cyclic nucleotide concentrations in relation to the excitability of Dictyostelium cells
,”
J. Exp. Biol.
81
,
33
47
(
1979
).
28.
A.
Gierer
and
H.
Meinhardt
, “
A theory of biological pattern formation
,”
Kybernetik
12
,
30
39
(
1972
).
29.
J. J.
Tyson
, “
From the Belousov-Zhabotinsky reaction to biochemical clocks, traveling waves and cell cycle regulation
,”
Biochem J.
479
,
185
206
(
2022
).
30.
R. J.
Field
,
E.
Koros
, and
R. M.
Noyes
, “
Oscillations in chemical systems II. Thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system
,”
J. Am. Chem. Soc.
94
,
8649
8664
(
1972
).
31.
J. J.
Tyson
, “
A quantitative account of oscillations, bistability, and traveling waves in the Belousov-Zhabotinsky reaction
,” in
Oscillations and Traveling Waves in Chemical Systems
, edited by
R. J.
Field
and
M.
Burger
(
Wiley-Interscience
,
New York
,
1985
), pp.
93
144
.
32.
L.
Gyorgyi
and
R. J.
Field
, “
A three-variable model of deterministic chaos in the Belousov-Zhabotinsky reaction
,”
Nature
355
,
808
810
(
1992
).
33.
R. J.
Field
and
R. M.
Noyes
, “
Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction
,”
J. Chem. Phys.
60
,
1877
1884
(
1974
).
34.
E.
Aichinger
,
N.
Kornet
,
T.
Friedrich
, and
T.
Laux
, “
Plant stem cell niches
,”
Annu. Rev. Plant Biol.
63
,
615
636
(
2012
).
35.
J. C.
Fletcher
and
E. M.
Meyerowitz
, “
Cell signaling within the shoot meristem
,”
Curr. Opin. Plant Biol.
3
,
23
30
(
2000
).
36.
S. P.
Gordon
,
V. S.
Chickarmane
,
C.
Ohno
, and
E. M.
Meyerowitz
, “
Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
16529
16534
(
2009
).
37.
M.
Somssich
,
B. I.
Je
,
R.
Simon
, and
D.
Jackson
, “
CLAVATA-WUSCHEL signaling in the shoot meristem
,”
Development
143
,
3238
3248
(
2016
).
38.
H.
Jonsson
,
M.
Heisler
,
G. V.
Reddy
,
V.
Agrawal
,
V.
Gor
,
B. E.
Shapiro
,
E.
Mjolsness
, and
E. M.
Meyerowitz
, “
Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem
,”
Bioinformatics
21
(
Suppl 1
),
i232
i240
(
2005
).
39.
S. V.
Nikolaev
,
S. I.
Fadeev
,
A. V.
Penenko
,
V. V.
Lavrekha
,
V. V.
Mironova
,
N. A.
Omelyanchuk
,
E.
Mjolsness
, and
N. A.
Kolchanov
, “
A systems approach to morphogenesis in Arabidopsis thaliana: II. Modeling the regulation of shoot apical meristem structure
,”
Biophysics
51
,
83
90
(
2006
).
40.
S. V.
Nikolaev
,
A. V.
Penenko
,
V. V.
Lavreha
,
E. D.
Mjolsness
, and
N. A.
Kolchanov
, “
A model study of the role of proteins CLV1, CLV2, CLV3, and WUS in regulation of the structure of the shoot apical meristem
,”
Russ. J. Dev. Biol.
38
,
383
388
(
2007
).
41.
T.
Hohm
,
E.
Zitzler
, and
R.
Simon
, “
A dynamic model for stem cell homeostasis and patterning in Arabidopsis meristems
,”
PLoS ONE
5
,
e9189
(
2010
).
42.
H.
Fujita
,
K.
Toyokura
,
K.
Okada
, and
M.
Kawaguchi
, “
Reaction-diffusion pattern in shoot apical meristem of plants
,”
PLoS ONE
6
,
e18243
(
2011
).
43.
L. A.
Segel
and
J. L.
Jackson
, “
Dissipative structure: An explanation and an ecological example
,”
J. Theor. Biol.
37
,
545
559
(
1972
).
44.
J. J.
Tyson
and
J. P.
Keener
, “
Singular perturbation theory of traveling waves in excitable media (a review)
,”
Physica D
32
,
327
361
(
1988
).
45.
Y.
Mori
,
A.
Jilkine
, and
L.
Edelstein-Keshet
, “
Wave-pinning and cell polarity from a bistable reaction-diffusion system
,”
Biophys. J.
94
,
3684
3697
(
2008
).
46.
R.
Sekine
,
T.
Shibata
, and
M.
Ebisuya
, “
Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty
,”
Nat. Commun.
9
,
5456
(
2018
).
47.
S.
Koga
and
Y.
Kuramoto
, “
Localized patterns in reaction-diffusion systems
,”
Prog. Theor. Phys.
63
,
106
121
(
1980
).
48.
D.
Battogtokh
, “
Domain nucleation and confinement in agent-controlled bistable systems
,”
Phys. Rev. E
91
,
032713
(
2015
).
49.
Y.
Kuramoto
,
H.
Nakao
, and
D.
Battogtokh
, “
Multi-scaled turbulence in large populations of oscillators in a diffusive medium
,”
Physica A
288
,
244
264
(
2000
).
50.
Y.
Kuramoto
,
D.
Battogtokh
, and
H.
Nakao
, “
Multiaffine chemical turbulence
,”
Phys. Rev. Lett.
81
,
3543
3546
(
1998
).
51.
D.
Battogtokh
, “
Front instabilities in a forced oscillatory medium with global coupling
,”
Phys. Rev. E
66
,
066202
(
2002
).
52.
L.
Edelstein-Keshet
,
Mathematical Models in Biology
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2005
).
53.
J. P.
Keener
, “
Propagation and its failure in coupled systems of discrete excitable cells
,”
SIAM J. Appl. Math.
47
,
556
572
(
1987
).
54.
T.
Erneux
and
G.
Nicolis
, “
Propagating waves in discrete bistable reaction-diffusion systems
,”
Physica D
67
,
237
244
(
1993
).
55.
I.
Mitkov
,
K.
Kladko
, and
J. E.
Pearson
, “
Tunable pinning of burst waves in extended systems with discrete sources
,”
Phys. Rev. Lett.
81
,
5453
5456
(
1998
).
56.
B.
Fornberg
,
A Practical Guide to Pseudospectral Methods
(
Cambridge University Press
,
Cambridge
,
1996
).
57.
S. V.
Nikolaev
,
U. S.
Zubairova
,
A. V.
Penenko
,
E. D.
Mjolsness
,
B. E.
Shapiro
, and
N. A.
Kolchanov
, “
Model of structuring the stem cell niche in shoot apical meristem of Arabidopsis thaliana
,”
Dokl. Biol. Sci.
452
,
316
319
(
2013
).
58.
R.
Gross-Hardt
and
T.
Laux
, “
Stem cell regulation in the shoot meristem
,”
J. Cell Sci.
116
,
1659
1666
(
2003
).
59.
U.
Brand
,
J. C.
Fletcher
,
M.
Hobe
,
E. M.
Meyerowitz
, and
R.
Simon
, “
Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity
,”
Science
289
,
617
619
(
2000
).
60.
H.
Schoof
,
M.
Lenhard
,
A.
Haecker
,
K. F.
Mayer
,
G.
Jurgens
, and
T.
Laux
, “
The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes
,”
Cell
100
,
635
644
(
2000
).
61.
D.
Battogtokh
and
J. J.
Tyson
, “
A bistable switch mechanism for stem cell domain nucleation in the shoot apical meristem
,”
Front Plant Sci.
7
,
674
(
2016
).
62.
D.
Reinhardt
,
M.
Frenz
,
T.
Mandel
, and
C.
Kuhlemeier
, “
Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem
,”
Development
130
,
4073
4083
(
2003
).
63.
N. E.
Kouvaris
,
H.
Kori
, and
A. S.
Mikhailov
, “
Traveling and pinned fronts in bistable reaction-diffusion systems on networks
,”
PLoS ONE
7
,
e45029
(
2012
).
64.
P.
Laufs
,
O.
Grandjean
,
C.
Jonak
,
K.
Kieu
, and
J.
Traas
, “
Cellular parameters of the shoot apical meristem in Arabidopsis
,”
Plant Cell
10
,
1375
1389
(
1998
).
You do not currently have access to this content.