This paper investigates the dynamics of a fuzzy controlled polishing machine where the effect of temporal sampling is also taken into account. Chaotic and transient chaotic behaviors are experienced for certain control parameter combinations. In the case of transient chaotic motion, closed-form algebraic expressions are determined for the expected value of the kickout number and for the corresponding standard deviation.
REFERENCES
1.
X.
Liu
and G. S.
Chen
, Friction Dynamics: Principles and Applications
(Woodhead Publishing
, 2016
).2.
J.
Awrejcewicz
and P.
Olejnik
, “Analysis of dynamic systems with various friction laws
,” Appl. Mech Rev.
58
(6
), 389
–411
(2005
). 3.
W.
Kunikowski
, P.
Olejnik
, and J.
Awrejcewicz
, “A fuzzy logic PI trajectory following control in a chaotically loaded real mechatronic dynamical system with stick-slip friction
,” J. Vib. Test. Syst. Dyn.
2
, 91
–107
(2018
). 4.
J.
Awrejcewicz
and C.-H.
Lamarque
, Bifurcation and Chaos in Nonsmooth Mechanical Systems
(World Scientific
, 2003
), Vol. 45.5.
G.
Licskó
and G.
Csernák
, “On the chaotic behaviour of a simple dry-friction oscillator
,” Math. Comput. Simul.
95
, 55
–62
(2014
). 6.
G.
Haller
and G.
Stépán
, “Micro-chaos in digital control
,” J. Nonlinear Sci.
6
, 415
–448
(1996
). 7.
G.
Gyebrószki
and G.
Csernák
, “Structures within the quantization noise: Micro-chaos in digitally controlled systems
,” IFAC-Pap.
51
, 256
–261
(2018
). 8.
T.
Tél
, J.
Vollmer
, and W.
Breymann
, “Transient chaos: The origin of transport in driven systems
,” Europhys. Lett.
35
, 659
(1996
). 9.
T.
Tél
, “The joy of transient chaos
,” Chaos
25
, 097619
(2015
). 10.
G.
Csernák
and G.
Stépán
, “Life expectancy of transient microchaotic behaviour
,” J. Nonlinear Sci.
15
, 63
–91
(2005
). 11.
G.
Stepan
, J. G.
Milton
, and T.
Insperger
, “Quantization improves stabilization of dynamical systems with delayed feedback
,” Chaos
27
, 114306
(2017
). 12.
A.
Politi
and A.
Torcini
, “Stable chaos,” in Nonlinear Dynamics and Chaos: Advances and Perspectives (Springer, 2010), pp. 103–129.13.
J. A.
Yorke
and E. D.
Yorke
, “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model
,” J. Stat. Phys.
21
, 263
–277
(1979
). 14.
Y.-C.
Lai
and T.
Tél
, Transient Chaos: Complex Dynamics on Finite Time Scales
(Springer Science & Business Media
, 2011
), Vol. 173.15.
G.
Pianigiani
and J. A.
Yorke
, “Expanding maps on sets which are almost invariant. Decay and chaos
,” Trans. Am. Math. Soc.
252
, 351
–366
(1979
). 16.
A.
Lasota
and J. A.
Yorke
, “The law of exponential decay for expanding mappings
,” Rend. Semin. Mat. Univ. Padova
64
, 141
–157
(1981
).17.
G.
Csernák
and G.
Stépán
, “Escape rate of transient chaotic phenomena in digitally controlled systems,” in Proceedings of the Fifth World Congress on Computational Mechanics (Vienna University of Technology, Austria, 2002).18.
K. M.
Passino
, S.
Yurkovich
, and M.
Reinfrank
, Fuzzy Control
(Addison-Wesley
, 1998
), Vol. 42.19.
20.
J.
Adamy
and R.
Kempf
, “Regularity and chaos in recurrent fuzzy systems
,” Fuzzy Sets Syst.
140
, 259
–284
(2003
). 21.
P.
Diamond
, “Chaos in iterated fuzzy systems
,” J. Math. Anal. Appl.
184
, 472
–484
(1994
). 22.
P.
Kloeden
, “Chaotic iterations of fuzzy sets
,” Fuzzy Sets Syst.
42
, 37
–42
(1991
). 23.
M.
Porto
and P.
Amato
, “A fuzzy approach for modeling chaotic dynamics with assigned properties,” in Ninth IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No. 00CH37063) (IEEE, 2000), Vol. 1, pp. 435–440.24.
O.
Calvo
and J. H.
Cartwright
, “Fuzzy control of chaos
,” Int. J. Bifurcation Chaos
8
, 1743
–1747
(1998
). 25.
H. S.
Haghighi
and A. H.
Markazi
, “Chaos prediction and control in MEMS resonators
,” Commun. Nonlinear Sci. Numer. Simul.
15
, 3091
–3099
(2010
). 26.
R.-E.
Precup
and M. L.
Tomescu
, “Stable fuzzy logic control of a general class of chaotic systems
,” Neural Comput. Appl.
26
, 541
–550
(2015
). 27.
H. O.
Wang
, K.
Tanaka
, and T.
Ikeda
, “Fuzzy modeling and control of chaotic systems,” in 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96 (IEEE, 1996), Vol. 3, pp. 209–212.28.
A.
Boulkroune
, A.
Bouzeriba
, and T.
Bouden
, “Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
,” Neurocomputing
173
, 606
–614
(2016
). 29.
S.
Adamovic
, M.
Milosavljevic
, M.
Veinovic
, M.
Sarac
, and A.
Jevremovic
, “Fuzzy commitment scheme for generation of cryptographic keys based on iris biometrics
,” IET Biom.
6
, 89
–96
(2017
). 30.
T.
Kaur
and M.
Kaur
, “Cryptographic key generation from multimodal template using fuzzy extractor,” in 2017 Tenth International Conference on Contemporary Computing (IC3) (IEEE, 2017), pp. 1–6.31.
A. P.
Pandian
, “Development of secure cloud based storage using the Elgamal hyper elliptic curve cryptography with fuzzy logic based integer selection
,” J. Soft Comput. Paradigm
2
, 24
–35
(2020
). 32.
A.
Sokolov
and M.
Wagenknecht
, “Chaotic behavior in recurrent Takagi-Sugeno models,” in Integration of Fuzzy Logic and Chaos Theory (Springer, 2006), pp. 361–389.33.
T.-Y.
Li
and J. A.
Yorke
, “Period three implies chaos,” in The Theory of Chaotic Attractors (Springer, 2004), pp. 77–84.34.
F. M.
Dekking
, C.
Kraaikamp
, H. P.
Lopuhaä
, and L. E.
Meester
, A Modern Introduction to Probability and Statistics: Understanding Why and How
(Springer
, 2005
), Vol. 488.© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.