We study chaotic dynamics in a system of four differential equations describing the interaction of five identical phase oscillators coupled via biharmonic function. We show that this system exhibits strange spiral attractors (Shilnikov attractors) with two zero (indistinguishable from zero in numerics) Lyapunov exponents in a wide region of the parameter space. We explain this phenomenon by means of bifurcation analysis of a three-dimensional Poincaré map for the system under consideration. We show that chaotic dynamics develop here near a codimension three bifurcation, when a periodic orbit (fixed point of the Poincaré map) has the triplet of multipliers (1,1,1). As it is known, the flow normal form for such bifurcation is the well-known three-dimensional Arneodó–Coullet–Spiegel–Tresser (ACST) system, which exhibits spiral attractors. According to this, we conclude that the additional zero Lyapunov exponent for orbits in the observed attractors appears due to the fact that the corresponding three-dimensional Poincaré map is very close to the time-shift map of the ACST-system.

1.
A. S.
Gonchenko
,
S. V.
Gonchenko
, and
L. P.
Shilnikov
, “
Towards scenarios of chaos appearance in three-dimensional maps
,”
Rus. Nonlin. Dyn.
8
,
3
28
(
2012
).
2.
I. R.
Garashchuk
,
D. I.
Sinelshchikov
,
A. O.
Kazakov
, and
N. A.
Kudryashov
, “
Hyperchaos and multistability in the model of two interacting microbubble contrast agents
,”
Chaos
29
,
063131
(
2019
).
3.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
4.
T.
Stankovski
,
T.
Pereira
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Coupling functions: Universal insights into dynamical interaction mechanisms
,”
Rev. Mod. Phys.
89
,
045001
(
2017
).
5.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics (Springer, 1975), pp. 420–422.
6.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotater model showing phase transitions via mutual entertainment
,”
Prog. Theor. Phys.
76
,
576
581
(
1986
).
7.
P.
Clusella
,
A.
Politi
, and
M.
Rosenblum
, “
A minimal model of self-consistent partial synchrony
,”
New J. Phys.
18
,
093037
(
2016
).
8.
J. R.
Engelbrecht
and
R.
Mirollo
, “
Classification of attractors for systems of identical coupled Kuramoto oscillators
,”
Chaos
24
,
013114
(
2014
).
9.
K.
Okuda
, “
Variety and generality of clustering in globally coupled oscillators
,”
Phys. D
63
,
424
436
(
1993
).
10.
D.
Hansel
,
G.
Mato
, and
C.
Meunier
, “
Clustering and slow switching in globally coupled phase oscillators
,”
Phys. Rev. E
48
,
3470
3477
(
1993
).
11.
H.
Kori
and
Y.
Kuramoto
, “
Slow switching in globally coupled oscillators: Robustness and occurrence through delayed coupling
,”
Phys. Rev. E
63
,
046214
(
2001
).
12.
P.
Ashwin
,
G.
Orosz
,
J.
Wordsworth
, and
S.
Townley
, “
Dynamics on networks of cluster states for globally coupled phase oscillators
,”
SIAM J. Appl. Dyn. Syst.
6
,
728
758
(
2007
).
13.
C.
Bick
, “
Heteroclinic dynamics of localized frequency synchrony: Heteroclinic cycles for small populations
,”
J. Nonlinear Sci.
29
,
2547
2570
(
2019
).
14.
P.
Ashwin
and
O.
Burylko
, “
Weak chimeras in minimal networks of coupled phase oscillators
,”
Chaos
25
,
013106
(
2015
).
15.
O. V.
Popovych
,
Y. L.
Maistrenko
, and
P. A.
Tass
, “
Phase chaos in coupled oscillators
,”
Phys. Rev. E
71
,
065201
(
2005
).
16.
C.
Bick
,
M.
Timme
,
D.
Paulikat
,
D.
Rathlev
, and
P.
Ashwin
, “
Chaos in symmetric phase oscillator networks
,”
Phys. Rev. Lett.
107
,
244101
(
2011
).
17.
C.
Bick
,
P.
Ashwin
, and
A.
Rodrigues
, “
Chaos in generically coupled phase oscillator networks with nonpairwise interactions
,”
Chaos
26
,
094814
(
2016
).
18.
H.
Broer
,
C.
Simó
, and
R.
Vitolo
, “
Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing
,”
Nonlinearity
15
,
1205
(
2002
).
19.
H.
Broer
,
R.
Vitolo
, and
C.
Simó
, “Quasi-periodic Hénon-like attractors in the Lorenz-84 climate model with seasonal forcing,” in EQUADIFF 2003 (World Scientific, 2005), pp. 601–606.
20.
S. V.
Gonchenko
,
I. I.
Ovsyannikov
,
C.
Simó
, and
D. V.
Turaev
, “
Three-dimensional Hénon-like maps and wild Lorenz-like attractors
,”
Int. J. Bifurc. Chaos
15
,
3493
3508
(
2005
).
21.
H. W.
Broer
,
C.
Simó
, and
R.
Vitolo
, “
Chaos and quasi-periodicity in diffeomorphisms of the solid torus
,”
Discrete Contin. Dyn. Syst. B
14
,
871
(
2010
).
22.
N. V.
Stankevich
,
N. A.
Shchegoleva
,
I. R.
Sataev
, and
A. P.
Kuznetsov
, “
Three-dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators
,”
J. Comput. Nonlinear Dyn.
15
,
111001
(
2020
).
23.
A.
Shykhmamedov
,
E.
Karatetskaia
,
A.
Kazakov
, and
N.
Stankevich
, “Hyperchaotic attractors of three-dimensional maps and scenarios of their appearance,” arXiv:2012.05099 (2020).
24.
E.
Karatetskaia
,
A.
Shykhmamedov
, and
A.
Kazakov
, “
Shilnikov attractors in three-dimensional orientation-reversing maps
,”
Chaos
31
,
011102
(
2021
).
25.
A. S.
Gonchenko
,
S. V.
Gonchenko
, and
A. O.
Kazakov
, “
Richness of chaotic dynamics in nonholonomic models of a celtic stone
,”
Regular Chaotic Dyn.
18
,
521
538
(
2013
).
26.
A. V.
Borisov
,
A. O.
Kazakov
, and
I. R.
Sataev
, “
Spiral chaos in the nonholonomic model of a Chaplygin top
,”
Regular Chaotic Dyn.
21
,
939
954
(
2016
).
27.
A.
Arneodo
,
P.
Coullet
,
E.
Spiegel
, and
C.
Tresser
, “
Asymptotic chaos
,”
Phys. D
14
,
327
347
(
1985
).
28.
A.
Arneodo
,
P.
Coullet
, and
E.
Spiegel
, “
The dynamics of triple convection
,”
Geophys. Astrophys. Fluid Dyn.
31
,
1
48
(
1985
).
29.
A.
Arneodo
,
P.
Coullet
, and
C.
Tresser
, “
Oscillators with chaotic behavior: An illustration of a theorem by Shil’nikov
,”
J. Stat. Phys.
27
,
171
182
(
1982
).
30.
A.
Gonchenko
,
S.
Gonchenko
,
A.
Kazakov
, and
D.
Turaev
, “
Simple scenarios of onset of chaos in three-dimensional maps
,”
Int. J. Bifurc. Chaos
24
,
1440005
(
2014
).
31.
A. S.
Gonchenko
and
S. V.
Gonchenko
, “
Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps
,”
Phys. D
337
,
43
57
(
2016
).
32.
E. A.
Grines
,
A. O.
Kazakov
, and
I. R.
Sataev
, “
Discrete Shilnikov attractor and chaotic dynamics in the system of five identical globally coupled phase oscillators with biharmonic coupling
,” arXiv:1712.03839 (2017).
33.
P.
Ashwin
,
C.
Bick
, and
O.
Burylko
, “
Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling
,”
Front. Appl. Math. Stat.
2
,
7
(
2016
).
34.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
35.
D. V.
Turaev
and
L. P.
Shil’nikov
, “
An example of a wild strange attractor
,”
Sb. Math.
189
,
291
314
(
1998
).
36.
D. V.
Turaev
and
L. P.
Shilnikov
, “
Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors
,”
Dokl. Math.
77
,
17
21
(
2008
).
37.
S.
Gonchenko
,
A.
Kazakov
, and
D.
Turaev
, “
Wild pseudohyperbolic attractor in a four-dimensional Lorenz system
,”
Nonlinearity
34
,
2018
(
2021
).
38.
A.
Dhooge
,
W.
Govaerts
,
Y. A.
Kuznetsov
,
H. G. E.
Meijer
, and
B.
Sautois
, “
New features of the software MatCont for bifurcation analysis of dynamical systems
,”
Math. Comput. Modell. Dyn. Syst.
14
,
147
175
(
2008
).
39.
V.
De Witte
,
W.
Govaerts
,
Y. A.
Kuznetsov
, and
M.
Friedman
, “
Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB
,”
ACM Trans. Math. Softw.
38
,
1
34
(
2012
).
40.
In order to find this region, we compute 1000 iteration of some orbit taken on the attractor and calculate the minimal distance between the attractor and the fixed point O. If this distance becomes less than 0.0003, we consider this attractor to be homoclinic, see more details on this method in Ref. 26.
41.
S. V.
Gonchenko
,
A. S.
Gonchenko
,
A. O.
Kazakov
,
A. D.
Kozlov
, and
Y. V.
Bakhanova
, “
Mathematical theory of dynamical chaos and its applications: Review. Part 2. Spiral chaos of three-dimensional flows
,”
Izv. VUZ Appl. Nonlinear Dyn.
27
,
7
52
(
2019
).
42.
Y. V.
Bakhanova
,
A. O.
Kazakov
,
E. Y.
Karatetskaya
,
A. D.
Kozlov
, and
K.
Saphonov
, “
On homoclinic attractors of three-dimensional flows
,”
Izv. VUZ Appl. Nonlinear Dyn.
28
,
231
258
(
2020
).
43.
S.
Malykh
,
Y.
Bakhanova
,
A.
Kazakov
,
K.
Pusuluri
, and
A.
Shilnikov
, “
Homoclinic chaos in the Rössler model
,”
Chaos
30
,
113126
(
2020
).
44.
J.
Vano
,
J.
Wildenberg
,
M.
Anderson
,
J.
Noel
, and
J.
Sprott
, “
Chaos in low-dimensional Lotka–Volterra models of competition
,”
Nonlinearity
19
,
2391
(
2006
).
45.
Y. A.
Kuznetsov
,
O.
De Feo
, and
S.
Rinaldi
, “
Belyakov homoclinic bifurcations in a tritrophic food chain model
,”
SIAM J. Appl. Math.
62
,
462
487
(
2001
).
46.
L. P.
Shilnikov
, “Bifurcation theory and turbulence,” in Methods of the Qualitative Theory of Differential Equations (Gorky, 1986), pp. 150–163.
47.
P.
Gaspard
, “
Generation of a countable set of homoclinic flows through bifurcation
,”
Phys. Lett. A
97
,
1
4
(
1983
).
48.
S. V.
Gonchenko
,
D. V.
Turaev
,
P.
Gaspard
, and
G.
Nicolis
, “
Complexity in the bifurcation structure of homoclinic loops to a saddle-focus
,”
Nonlinearity
10
,
409
(
1997
).
49.
K.
Kaneko
, “
Doubling of torus
,”
Prog. Theor. Phys.
69
,
1806
1810
(
1983
).
50.
A.
Arneodo
,
P.
Coullet
, and
E. A.
Spiegel
, “
Cascade of period doublings of tori
,”
Phys. Lett. A
94
,
1
6
(
1983
).
51.
A.
Gonchenko
,
S.
Gonchenko
, and
D.
Turaev
, “
Doubling of invariant curves and chaos in three-dimensional diffeomorphisms
,”
Chaos
31
,
113130
(
2021
).
52.
A. V.
Borisov
,
A. O.
Kazakov
, and
I. R.
Sataev
, “
The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top
,”
Regular Chaotic Dyn.
19
,
718
733
(
2014
).
You do not currently have access to this content.