This paper proposes an approach for the estimation of a time-varying Hurst exponent to allow accurate identification of multifractional Brownian motion (MFBM). The contribution provides a prescription for how to deal with the MFBM measurement data to solve regression and classification problems. Theoretical studies are supplemented with computer simulations and real-world examples. Those prove that the procedure proposed in this paper outperforms the best-in-class algorithm.
REFERENCES
1
A.-L.
Barabási
, “The architecture of complexity
,” IEEE Control Syst. Mag.
27
(4), 33
–42
(2007
).2
N.
Molkenthin
, K.
Rehfeld
, N.
Marwan
, and J.
Kurths
, “Networks from flows—From dynamics to topology
,” Sci. Rep.
4
, 4119
(2014
). 3
N.
Ekhtiari
, A.
Agarwal
, N.
Marwan
, and R. V.
Donner
, “Disentangling the multi-scale effects of sea-surface temperatures on global precipitation: A coupled networks approach
,” Chaos
29
, 063116
(2019
). 4
U.
Frey
, T.
Brodbeck
, A.
Majumdar
, D.
Robin Taylor
, G.
Ian Town
, M.
Silverman
, and B.
Suki
, “Risk of severe asthma episodes predicted from fluctuation analysis of airway function
,” Nature
438
, 667
–670
(2005
). 5
I.
Jabłoński
, R.
Morello
, and J.
Mroczka
, “The complexity and variability mapping for prediction and explainability of the sleep apnea syndrome
,” IEEE Sens. J.
21
, 14203
–14212
(2021
). 6
S.
Wanqing
, X.
Chen
, C.
Cattani
, and E.
Zio
, “Multifractional Brownian motion and quantum-behaved partial swarm optimization for bearing degradation forecasting
,” Complexity
2020
, 8543131
. 7
A. V.
Weigel
, S.
Ragi
, M. L.
Reid
, E. K.
Chong
, M. M.
Tamkun
, and D.
Krapf
, “Obstructed diffusion propagator analysis for single-particle tracking
,” Phys. Rev. E
85
, 041924
(2012
). 8
T.
Westerhold
, N.
Marwan
, A. J.
Drury
, D.
Liebrand
, C.
Agnini
, E.
Anagnostou
, J. S. K.
Barnet
, S. M.
Bohaty
, D.
De Vleeschouwer
, F.
Florindo
, T.
Frederichs
, D. A.
Hodell
, A. E.
Holbourn
, D.
Kroon
, V.
Lauretano
, K.
Littler
, L. J.
Lourens
, M.
Lyle
, H.
Pälike
, U.
Röhl
, J.
Tian
, R. H.
Wilkens
, P. A.
Wilson
, and J. C.
Zachos
, “An astronomically dated record of Earth’s climate and its predictability over the last 66 million years
,” Science
369
, 1383
–1387
(2020
). 9
N.
Dioguardi
, F.
Grizzi
, B.
Franceschini
, P.
Bossi
, and C.
Russo
, “Liver fibrosis and tissue architectural change measurement using fractal-rectified metrics and Hurst’s exponent
,” World J. Gastroenterol.
12
, 2187
(2006
). 10
M.
Gilmore
, C.
Yu
, T.
Rhodes
, and W.
Peebles
, “Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence
,” Phys. Plasmas
9
, 1312
–1317
(2002
). 11
X.
Liu
, B.
Wang
, and L.
Xu
, “Statistical analysis of Hurst exponents of essential/nonessential genes in 33 bacterial genomes
,” PLoS One
10
(6), e0129716
(2015
).12
13
P.
Doukhan
, G.
Oppenheim
, and M.
Taqqu
, Theory and Applications of Long-Range Dependence
(Birkhäuser, Inc.
, Boston, MA
, 2003
).14
A. N.
Kolmogorov
, “Wienersche spiralen und einige andere interessante Kurven in Hilbertscen Raum, C. R. (Doklady)
,” Acad. Sci. URSS (N.S.)
26
, 115
–118
(1940
).15
B. B.
Mandelbrot
and J. W.
Van Ness
, “Fractional Brownian motions, fractional noises and applications
,” SIAM Rev.
10
, 422
–437
(1968
). 16
D.
Krapf
, N.
Lukat
, E.
Marinari
, R.
Metzler
, G.
Oshanin
, C.
Selhuber-Unkel
, A.
Squarcini
, L.
Stadler
, M.
Weiss
, and X.
Xu
, “Spectral content of a single non-Brownian trajectory
,” Phys. Rev. X
9
(1), 011019
(2019
).17
R.
Metzler
, J.-H.
Jeon
, A. G.
Cherstvy
, and E.
Barkai
, “Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,” Phys. Chem. Chem. Phys.
16
, 24128
–24164
(2014
). 18
C. L.
Franzke
, S. M.
Osprey
, P.
Davini
, and N. W.
Watkins
, “A dynamical systems explanation of the Hurst effect and atmospheric low-frequency variability
,” Sci. Rep.
5
, 9068
(2015
). 19
W.
Han
, Z.
Zhang
, C.
Tang
, Y.
Yan
, E.
Luo
, and K.
Xie
, “Power-law exponent modulated multiscale entropy: A complexity measure applied to physiologic time series
,” IEEE Access
8
, 112725
–112734
(2020
). 20
U.
Frey
, G.
Maksym
, and B.
Suki
, “Temporal complexity in clinical manifestations of lung disease
,” J. Appl. Physiol.
110
, 1723
–1731
(2011
). 21
G.
Sikora
, A.
Wyłomańska
, J.
Gajda
, L.
Solé
, E. J.
Akin
, M. M.
Tamkun
, and D.
Krapf
, “Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis
,” Phys. Rev. E
96
, 062404
(2017
). 22
A. V.
Weigel
, B.
Simon
, M. M.
Tamkun
, and D.
Krapf
, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking
,” Proc. Natl. Acad. Sci. U.S.A.
108
, 6438
–6443
(2011
). 23
F.
Etoc
, E.
Balloul
, C.
Vicario
, D.
Normanno
, D.
Liße
, A.
Sittner
, J.
Piehler
, M.
Dahan
, and M.
Coppey
, “Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells
,” Nat. Mater.
17
, 740
–746
(2018
). 24
A.
Sabri
, X.
Xu
, D.
Krapf
, and M.
Weiss
, “Elucidating the origin of heterogeneous anomalous diffusion in the cytoplasm of mammalian cells
,” Phys. Rev. Lett.
125
, 058101
(2020
). 25
H.
Zhang
, D.
Zhou
, M.
Chen
, and J.
Shang
, “FBM-based remaining useful life prediction for degradation processes with long-range dependence and multiple modes
,” IEEE Trans. Reliab.
68
(3), 1021
–1033
(2018
).26
A.
Ayache
, S.
Cohen
, and J. L.
Véhel
, “The covariance structure of multifractional Brownian motion, with application to long range dependence,” in 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100) (IEEE, 2000), Vol. 6, pp. 3810–3813.27
R.-F.
Peltier
and J. L.
Véhel
, “Multifractional Brownian motion definition and preliminary results,” Ph.D. thesis (INRIA, 1995).28
K.
Ral’chenko
and G.
Shevchenko
, “Path properties of multifractal Brownian motion
,” Theory Probab. Math. Stat.
80
, 119
–130
(2010
).29
H.
Sheng
, H.
Sun
, Y.
Chen
, and T.
Qiu
, “Synthesis of multifractional Gaussian noises based on variable-order fractional operators
,” Signal Process.
91
, 1645
–1650
(2011
). 30
S.
Bianchi
, “Pathwise identification of the memory function of multifractional Brownian motion with application to finance
,” Int. J. Theor. Appl. Finance
08
, 255
–281
(2005
). 31
S.
Bianchi
, A.
Pantanella
, and A.
Pianese
, “Modeling stock prices by multifractional Brownian motion: An improved estimation of the pointwise regularity
,” Quant. Finance
13
, 1317
–1330
(2013
). 32
L.
Nicholson
, A.
Wirbel
, C.
Mayer
, and A.
Lambrecht
, “The challenge of non-stationary feedbacks in modeling the response of debris-covered glaciers to climate forcing
,” Front. Earth Sci.
9
, 662695
(2021
). 33
R.
Rupal
and F. S.
Oliveira
, “Real-time dynamic pricing in a non-stationary environment using model-free reinformcement learning
,” Omega
47
, 116
–126
(2014
).34
S.
Wolf
, R.
Huismans
, J.
Braun
, and X.
Yuan
, “Topography of mountain belts controlled by rheology and surface processes
,” Nature
606
, 516
–521
(2022
). 35
S. S.
Mwanje
, M.
Kajo
, and J.
Ali-Tolpa
, “Modeling and abstraction of network and environment states using deep learning,” IEEE Network
34
, 8
–13
(2020
).36
A.
Ayache
and J. L.
Véhel
, “On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion
,” Stoch. Process. Appl.
111
, 119
–156
(2004
). 37
A.
Benassi
, S.
Cohen
, and J.
Istas
, “Identifying the multifractional function of a Gaussian process
,” Stat. Probab. Lett.
39
, 337
–345
(1998
). 38
P. R.
Bertrand
, M.
Fhima
, and A.
Guillin
, “Local estimation of the Hurst index of multifractional Brownian motion by increment ratio statistic method
,” ESAIM Probab. Stat.
17
, 307
–327
(2013
). 39
J.-F.
Coeurjolly
, “Identification of multifractional Brownian motion
,” Bernoulli
11
, 987
–1008
(2005
). 40
S.
Jin
, Q.
Peng
, and H.
Schellhorn
, “Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients
,” Stat. Inference Stoch. Process.
21
, 113
–140
(2018
). 41
A.
Pianese
, S.
Bianchi
, and A. M.
Palazzo
, “Fast and unbiased estimator of the time-dependent Hurst exponent
,” Chaos
28
, 031102
(2018
). 42
Z.
Fan
, C.
Li
, Y.
Chen
, J.
Wei
, G.
Loprencipe
, X.
Chen
, and P.
Di Mascio
, “Automatic crack detection on road pavements using encoder-decoder architecture
,” Materials
13
, 2960
(2020
). 43
Y.
Ranasinghe
, S.
Herath
, K.
Weerasooriya
, M.
Ekanayake
, R.
Godaliyadda
, P.
Ekanayake
, and V.
Herath
, “Convolutional autoencoder for blind hyperspectral image unmixing,” in 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS) (IEEE, 2020), pp. 174–179.44
O.
Ronneberger
, P.
Fischer
, and T.
Brox
, “U-Net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Cham, 2015), pp. 234–241.45
46
M. P.
Deisenroth
, A. A.
Faisal
, and C. S.
Ong
, Mathematics for Machine Learning
(Cambridge University Press
, 2020
).47
V.
Mazzia
, F.
Salvetti
, and M.
Chiaberge
, “Efficient-CapsNet: Capsule network with self-attention routing
,” Sci. Rep.
11
, 14634
(2021
). 48
S.
Buchaniec
, M.
Gnatowski
, and G.
Brus
, “Integration of classical mathematical modeling with an artificial neural network for the problems with limited dataset
,” Energies
14
, 5127
(2021
). 49
T.
Shaikhina
and N. A.
Khovanova
, “Handling limited datasets with neural networks in medical applications: A small-data approach
,” Artif. Intell. Med.
75
, 51
–63
(2017
). 50
A. N.
Bondarenko
, T. V.
Bugueva
, and V. A.
Dedok
, “Inverse problems of anomalous diffusion theory: An artificial neural network approach
,” J. Appl. Ind. Math.
10
, 311
–321
(2016
). 51
J.
Janczura
, P.
Kowalek
, H.
Loch-Olszewska
, J.
Szwabiński
, and A.
Weron
, “Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion
,” Phys. Rev. E
102
, 032402
(2020
). 52
P.
Kowalek
, H.
Loch-Olszewska
, and J.
Szwabiński
, “Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach
,” Phys. Rev. E
100
, 032410
(2019
). 53
G.
Muñoz-Gil
, G.
Volpe
, M. A.
Garcia-March
, E.
Aghion
, A.
Argun
, C. B.
Hong
, T.
Bland
, S.
Bo
, J. A.
Conejero
, N.
Firbas
et al., “Objective comparison of methods to decode anomalous diffusion
,” Nat. Commun.
12
, 6253
(2021
). 54
V.
Pipiras
and M. S.
Taqqu
, Long-Range Dependence and Self-Similarity
(Cambridge University Press
, 2017
), Vol. 45.55
F. A.
Harang
, T. K.
Nilssen
, and F. N.
Proske
, “Girsanov theorem for multifractional Brownian processes
,” Stochastics
2022
, 1
–29
. 56
K. S.
Miller
and B.
Ross
, An Introduction to the Fractional Calculus and Fractional Differential Equations
(Wiley
, 1993
).57
A.
Ahmad
, M.
Ali
, and S. A.
Malik
, “Inverse problems for diffusion equation with fractional Dzherbashian-Nersesian operator
,” Fract. Calc. Appl. Anal.
24
, 1899
–1918
(2021
). 58
M.
Balcerek
and K.
Burnecki
, “Testing of multifractional Brownian motion
,” Entropy
22
, 1403
(2020
). 59
C.
Dieball
, D.
Krapf
, M.
Weiss
, and A.
Godec
, “Scattering fingerprints of two-state dynamics
,” New J. Phys.
24
, 023004
(2022
). 60
J.
Janczura
, M.
Balcerek
, K.
Burnecki
, A.
Sabri
, M.
Weiss
, and D.
Krapf
, “Identifying heterogeneous diffusion states in the cytoplasm by a hidden Markov model
,” New J. Phys.
23
, 053018
(2021
). 61
C.
Szegedy
, S.
Ioffe
, V.
Vanhoucke
, and A. A.
Alemi
, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in Thirty-First AAAI Conference on Artificial Intelligence (AAAI, 2017).62
C.
Szegedy
, W.
Liu
, Y.
Jia
, P.
Sermanet
, S.
Reed
, D.
Anguelov
, D.
Erhan
, V.
Vanhoucke
, and A.
Rabinovich
, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 1–9.63
K.
He
, X.
Zhang
, S.
Ren
, and J.
Sun
, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 770–778.64
65
R.
Caruana
, S.
Lawrence
, and C.
Giles
, “Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping
,” Adv. Neural Inf. Process. Syst.
13
, 402
–408
(2000
).66
A.
Dosovitskiy
, P.
Fischer
, E.
Ilg
, P.
Hausser
, C.
Hazirbas
, V.
Golkov
, P.
Van Der Smagt
, D.
Cremers
, and T.
Brox
, “FlowNet: Learning optical flow with convolutional networks,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2015), pp. 2758–2766.67
68
G.
Lample
, M.
Ballesteros
, S.
Subramanian
, K.
Kawakami
, and C.
Dyer
, “Neural architectures for named entity recognition,” arXiv:1603.01360 (2016).69
X.
Mao
, Q.
Li
, H.
Xie
, R. Y.
Lau
, Z.
Wang
, and S.
Paul Smolley
, “Least squares generative adversarial networks,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2017), pp. 2794–2802.70
S.
Ruder
, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747 (2016).71
S.
Sabour
, N.
Frosst
, and G. E.
Hinton
, “Dynamic routing between capsules
,” Adv. Neural Inf. Process. Syst.
30
, 3856–3866
(2017
).72
G.
Chan
and A. T.
Wood
, “Simulation of multifractional Brownian motion,” in COMPSTAT (Springer, 1998), pp. 233–238.73
T.
Dieker
, “Simulation of fractional Brownian motion,” Ph.D. thesis, master’s thesis, Department of Mathematical Sciences (University of Twente, 2004).74
C.
Gosse
and V.
Croquette
, “Magnetic tweezers: Micromanipulation and force measurement at the molecular level
,” Biophys. J.
82
, 3314
–3329
(2002
). 75
D.
Szarek
, K.
Maraj-Zygmąt
, G.
Sikora
, D.
Krapf
, and A.
Wyłomańska
, “Statistical test for anomalous diffusion based on empirical anomaly measure for Gaussian processes
,” Comput. Stat. Data Anal.
168
, 107401
(2022
). 76
F. C.
MacKintosh
and C.
Schmidt
, “Microrheology
,” Curr. Opin. Colloid Interface Sci.
4
, 300
–307
(1999
). 77
A.
Einstein
, Investigations on the Theory of Brownian Movement
(Dover Publications
, New York
, 1956
).78
G. E.
Uhlenbeck
and L. S.
Ornstein
, “On the theory of the Brownian motion
,” Phys. Rev.
36
, 823
(1930
). 79
P.
Cheridito
, H.
Kawaguchi
, and M.
Maejima
, “Fractional Ornstein-Uhlenbeck processes
,” Electron. J. Probab.
8
, 1
–14
(2003
). 80
R.
Pawfjla
, “Statistical geometry of the smoothed random telegraph signal
,” Int. J. Control
16
, 629
–640
(1972
). 81
J. F. C.
Kingman
, Poisson Processes
(The Clarendon Press, Oxford University Press
, 1993
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.