Substantiated explanations of the unpredictability regarding sandpile models of self-organized criticality (SOC) gave way to efficient forecasts of extremes in a few models. The appearance of extremes requires a preparation phase that ends with general overloading of the system and spatial clustering of the local stress. Here, we relate the predictability of large events to the system volume in the Manna and Bak–Tang–Wiesenfeld sandpiles, which are basic models of SOC. We establish that in the Manna model, the events located to the right of the power-law segment of the size-frequency relationship are predictable and the prediction efficiency is described by the universal linear dependence on the event size scaled by a power-law function of the lattice volume. Our scaling-based approach to predictability contributes to the theory of SOC and may elucidate the forecast of extremes in the dynamics of such systems with SOC as neuronal networks and earthquakes.

1.
P.
Bak
and
M.
Paczuski
, “
Complexity, contingency, and criticality
,”
Proc. Natl. Acad. Sci. U.S.A.
92
,
6689
6696
(
1995
).
2.
S.
Pepke
and
J.
Carlson
, “
Predictability of self-organizing systems
,”
Phys. Rev. E
50
,
236
(
1994
).
3.
G.
Mikaberidze
and
R. M.
D’Souza
, “
Sandpile cascades on oscillator networks: The BTW model meets Kuramoto
,”
Chaos
32
,
053121
(
2022
).
4.
M.
Paczuski
,
S.
Boettcher
, and
M.
Baiesi
, “
Interoccurrence times in the Bak-Tang-Wiesenfeld sandpile model: A comparison with the observed statistics of solar flares
,”
Phys. Rev. Lett.
95
,
181102
(
2005
).
5.
A.
Garber
,
S.
Hallerberg
, and
H.
Kantz
, “
Predicting extreme avalanches in self-organized critical sandpiles
,”
Phys. Rev. E
80
,
026124
(
2009
).
6.
A.
Deluca
,
N. R.
Moloney
, and
Á.
Corral
, “
Data-driven prediction of thresholded time series of rainfall and self-organized criticality models
,”
Phys. Rev. E
91
,
052808
(
2015
).
7.
A.
Shapoval
and
M.
Shnirman
, “
How size of target avalanches influences prediction efficiency
,”
Int. J. Mod. Phys. C
17
,
1777
1790
(
2006
).
8.
J.
Hesse
and
T.
Gross
, “
Self-organized criticality as a fundamental property of neural systems
,”
Front. Syst. Neurosci.
8
,
166
(
2014
).
9.
A. V.
Milovanov
,
J. J.
Rasmussen
, and
B.
Groslambert
, “
Black swans, extreme risks, and the e-pile model of self-organized criticality
,”
Chaos, Solitons Fractals
144
,
110665
(
2021
).
10.
S.
Manna
, “
Two-state model of self-organized criticality
,”
J. Phys. A
24
,
L363
L369
(
1991
).
11.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality: An explanation of 1/f noise
,”
Phys. Rev. Lett.
59
,
381
383
(
1987
).
12.
B.
Tadić
and
D.
Dhar
, “
Emergent spatial structures in critical sandpiles
,”
Phys. Rev. Lett.
79
,
1519
(
1997
).
13.
M.
Shnirman
and
E.
Blanter
, “
Self-organized criticality in a mixed hierarchical system
,”
Phys. Rev. Lett.
81
,
5445
(
1998
).
14.
B.
Malamud
,
G.
Morein
, and
D.
Turcotte
, “
Forest fires: An example of self-organized critical behavior
,”
Science
281
,
1840
1842
(
1998
).
15.
R.
Dickman
,
A.
Vespignani
, and
S.
Zapperi
, “
Self-organized criticality as an absorbing-state phase transition
,”
Phys. Rev. E
57
,
5095
(
1998
).
16.
S.
Hainzl
,
G.
Zöller
,
J.
Kurths
, and
J.
Zschau
, “
Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality
,”
Geophys. Res. Lett.
27
,
597
600
, https://doi.org/10.1029/1999GL011000 (
2000
).
17.
A.
Levina
,
J. M.
Herrmann
, and
T.
Geisel
, “
Dynamical synapses causing self-organized criticality in neural networks
,”
Nat. Phys.
3
,
857
860
(
2007
).
18.
D.
Millman
,
S.
Mihalas
,
A.
Kirkwood
, and
E.
Niebur
, “
Self-organized criticality occurs in non-conservative neuronal networks during ‘up’ states
,”
Nat. Phys.
6
,
801
805
(
2010
).
19.
P.
Bak
,
How Nature Works: The Science of Self-Organized Criticality
(
Springer Science & Business Media
,
2013
).
20.
R.
McAteer
,
M.
Aschwanden
,
M.
Dimitropoulou
,
M.
Georgoulis
,
G.
Pruessner
,
L.
Morales
,
J.
Ireland
, and
V.
Abramenko
, “
25 years of self-organized criticality: Numerical detection methods
,”
Space Sci. Rev.
198
,
217
266
(
2016
).
21.
N.
Watkins
,
G.
Pruessner
,
S.
Chapman
,
N.
Crosby
, and
H.
Jensen
, “
25 years of self-organized criticality: Concepts and controversies
,”
Space Sci. Rev.
198
,
3
44
(
2016
).
22.
A.
Shapoval
,
J.
Le Mouël
,
M.
Shnirman
, and
V.
Courtillot
, “
Observational evidence in favor of scale-free evolution of sunspot groups
,”
Astron. Astrophys.
618
,
A183
(
2018
).
23.
Y.-C.
Zhang
, “
Scaling theory of self-organized criticality
,”
Phys. Rev. Lett.
63
,
470
(
1989
).
24.
D.
Dhar
, “
Theoretical studies of self-organized criticality
,”
Phys. A
369
,
29
70
(
2006
).
25.
R.
Geller
,
D.
Jackson
,
Y.
Kagan
, and
F.
Mulargia
, “
Earthquakes cannot be predicted
,”
Science
275
,
1616
(
1997
).
26.
M.
Shnirman
and
E.
Blanter
, “
Mixed hierarchical model of seismicity: Scaling and prediction
,”
Phys. Earth Planet. Inter.
111
,
295
303
(
1999
).
27.
C.
Meisel
,
A.
Storch
,
S.
Hallmeyer-Elgner
,
E.
Bullmore
, and
T.
Gross
, “
Failure of adaptive self-organized criticality during epileptic seizure attacks
,”
PLoS Comput. Biol.
8
,
e1002312
(
2012
).
28.
C.
Tebaldi
,
M.
De Menech
, and
A. L.
Stella
, “
Multifractal scaling in the Bak-Tang-Wiesenfeld sandpile and edge events
,”
Phys. Rev. Lett.
83
,
3952
(
1999
).
29.
G.
Molchan
, “
Earthquake prediction as a decision-making problem
,”
Pure Appl. Geophys.
149
,
233
247
(
1997
).
30.
G.
Molchan
and
V.
Keilis-Borok
, “
Earthquake prediction: Probabilistic aspect
,”
Geophys. J. Int.
173
,
1012
1017
(
2008
).
31.
D. M.
Powers
, “Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation,” arXiv:2010.16061 (2020).
32.
A.
Vespignani
,
R.
Dickman
,
M. A.
Munoz
, and
S.
Zapperi
, “
Absorbing-state phase transitions in fixed-energy sandpiles
,”
Phys. Rev. E
62
,
4564
(
2000
).
33.
A.
Shapoval
and
M.
Shnirman
, “
Crossover phenomenon and universality: From random walk to deterministic sand-piles through random sand-piles
,”
Int. J. Mod. Phys. C
16
,
1893
1907
(
2005
).
34.
D.
Sornette
, “
Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
2522
2529
(
2002
).
35.
S.
Hallerberg
and
H.
Kantz
, “
Influence of the event magnitude on the predictability of an extreme event
,”
Phys. Rev. E
77
,
011108
(
2008
).
36.
H.
Kantz
, “Dynamics and statistics of extreme events,” in Network Science (Springer, 2010), pp. 205–216.
37.
D.
Lamper
,
S. D.
Howison
, and
N. F.
Johnson
, “
Predictability of large future changes in a competitive evolving population
,”
Phys. Rev. Lett.
88
,
017902
(
2001
).
38.
A.
Shapoval
,
D.
Savostianova
, and
M.
Shnirman
, “
Predictability and scaling in a BTW sandpile on a self-similar lattice
,”
J. Stat. Phys.
183
,
1
15
(
2021
).
39.
J. A.
Bonachela
and
M. A.
Munoz
, “
Self-organization without conservation: True or just apparent scale-invariance?
,”
J. Stat. Mech.: Theory Exp.
2009
,
P09009
.
40.
V.
Buendía
,
S.
Di Santo
,
J. A.
Bonachela
, and
M. A.
Muñoz
, “
Feedback mechanisms for self-organization to the edge of a phase transition
,”
Front. Phys.
(
2020
).
You do not currently have access to this content.