Using Fourier representations, an elaborate study of regular cellular-convective and chaotic motions in a ferrofluid is made. Investigation is made on the adequacy or otherwise of the minimal mode in studying such motions. Higher-order modes are also considered by adding modes (vertical/horizontal/combined extension). For higher modes, the extensions yield a dynamical system of order greater than three. The characteristic features of extended ferromagnetic-Lorenz models are analyzed using the largest Lyapunov exponent(LE), second largest LE, bifurcation diagram, and phase-space plots. The effect of additional modes on critical modal-Rayleigh (infinitesimal and finite-amplitude ones) numbers and the Rayleigh number at which transition to chaos occurs are examined to report features of ferroconvection hitherto unseen in previous studies. As both horizontal and vertical modes are increased, our findings infer that the dynamical system displays advanced onset of regular convection and delayed chaotic motion. Vigorous-chaotic motion is seen on adding vertical modes, whereas on adding horizontal modes, intense chaos appears with decreased intensity for large values of the scaled Rayleigh number. Most important finding from the study is that as modes are increased (vertical/horizontal), the transition from regular to chaotic motion is greatly modified and leads the system to a hyper-chaotic state. Conventionally, the chaotic or hyper-chaotic state is intermittent with a periodic/quasi-periodic state but it can be retained in the chaotic or hyper-chaotic state by considering moderate values of the Prandtl number and/or by bringing in the ferromagnetic effect.

1.
S. U. S.
Choi
and
J. A.
Eastman
Enhancing thermal conductivity of fluids with nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition
, November 12–17, 1995 (ASME, 1995).
2.
H.
Masuda
,
A.
Ebata
,
K.
Teramae
, and
N.
Hishinuma
, “
Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles
,”
Netsu Bussei
7
,
227
233
(
1993
).
3.
P. G.
Siddheshwar
,
C.
Kanchana
,
Y.
Kakimoto
, and
A.
Nakayama
, “
Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: Theoretical answer to the phenomenon of enhanced heat transfer
,”
ASME J. Heat Transfer
139
,
012402
(
2017
).
4.
C.
Kanchana
and
Y.
Zhao
, “
Effect of internal heat generation/absorption on Rayleigh–Bénard convection in water well-dispersed with nanoparticles or carbon nanotubes
,”
Int. J. Heat Mass Transfer
127
,
1031
1047
(
2018
).
5.
C.
Kanchana
,
Y.
Zhao
, and
P. G.
Siddheshwar
, “
A comparative study of individual influences of suspended multiwalled carbon nanotubes and alumina nanoparticles on Rayleigh–Bénard convection in water
,”
Phys. Fluids
30
,
084101
(
2018
).
6.
R. E.
Rosensweig
,
J. W.
Nestor
, and
R. S.
Timmins
,
Ferrohydrodynamic Fluids for Direct Conversion of Heat Energy. Materials Associated with Direct Energy Conversion
(
Avco Corporation
,
Wilmington
,
1965
).
7.
R.
Kaiser
and
R. E.
Rosensweig
,
Study of Ferromagnetic Liquid
(
National Aeronautics and Space Administration
,
Washington DC
,
1969
).
8.
M. T.
Shliomis
, “
Magnetic fluid
,”
Sov. Phys. Usp.
17
,
153
169
(
1974
).
9.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Cambridge University Press
,
Cambridge
,
1985
).
10.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Dover Publications, Courier Corporation
,
Mineola, New York
,
1997
).
11.
B. A.
Finlayson
, “
Convective instability of ferromagnetic fluids
,”
J. Fluid Mech.
40
,
753
167
(
1970
).
12.
L.
Schwab
,
U.
Hildebrandt
, and
K.
Stierstadt
, “
Magnetic Bénard convection
,”
J. Magn. Magn. Mater.
39
,
113
124
(
1983
).
13.
P. J.
Stiles
and
M. J.
Kagan
, “
Thermo-convective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field
,”
J. Magn. Magn. Mater.
85
,
196
198
(
1990
).
14.
P. J.
Blennerhassett
,
F.
Lin
, and
P. J.
Stiles
, “
Heat transfer through strongly magnetized ferrofluids
,”
Proc. Roy. Soc. London A
433
,
165
177
(
1991
).
15.
N.
Rudraiah
and
G. N.
Sekhar
, “
Convection in magnetic fluids with internal heat generation
,”
ASME J. Heat Transfer
113
,
122
127
(
1991
).
16.
D. P.
Lalas
and
S.
Carmi
, “
Thermoconvective stability of ferrofluids
,”
Phys. Fluids
14
,
436
437
(
1971
).
17.
M. D.
Gupta
and
A. S.
Gupta
, “
Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis
,”
Int. J. Eng. Sci.
17
,
271
277
(
1979
).
18.
P. G.
Siddheshwar
, “
Rayleigh–Bénard convection in a ferromagnetic fluid with second sound
,”
Proceedings of Japan Soc. Of Magnetic Fluids
25
,
32
36
(
1993
).
19.
P. G.
Siddheshwar
, “
Convective instability of ferromagnetic fluids bounded by fluid permeable magnetic boundaries
,”
J. Magn. Magn. Mater.
149
,
148
150
(
1995
).
20.
R.
Bajaj
and
S. K.
Malik
, “
Pattern formation in ferrofluids
,”
J. Magn. Magn. Mater.
149
,
158
161
(
1995
).
21.
R.
Bajaj
and
S. K.
Malik
, “
Convective instability and pattern formation in magnetic fluids
,”
J. Math. Anal. Appl.
207
,
172
191
(
1997
).
22.
P. G.
Siddheshwar
and
A.
Abraham
, “
Effect of time-periodic boundary temperatures/body force on Rayleigh–Bénard convection in a ferromagnetic fluid
,”
Acta Mech.
161
,
131
150
(
2003
).
23.
T. Y.
Chong
,
K. L.
Ho
, and
B. H.
Ong
, “
Investigations of field instability of ferrofluid in hypergravity and microgravity
,”
AIP Adv.
2
,
012138
(
2012
).
24.
B.
Straughan
, “Ferrohydrodynamic convection,” in The Energy Method, Stability, and Nonlinear Convection (Applied Mathematical Sciences, Springer, New York, 2004).
25.
Sunil
and
A.
Mahajan
, “
A nonlinear stability analysis for magnetized ferrofluid heated from below
,”
Proc. Roy. Soc. London A
464
,
83
98
(
2004
).
26.
P. G.
Siddheshwar
,
O. P.
Suthar
, and
C.
Kanchana
, “
Finite-amplitude ferro-convection and electro-convection in a rotating fluid
,”
SN Appl. Sci.
1
,
1542
(
2019
).
27.
P. N.
Kaloni
and
J. X.
Lou
, “
Convective instability of magnetic fluids
,”
Phys. Rev. E
70
,
026313
(
2004
).
28.
S. A.
Suslov
, “
Thermomagnetic convection in a vertical layer of ferromagnetic fluid
,”
Phys. Fluids
24
,
084101
(
2008
).
29.
P.
Dey
and
S. A.
Suslov
, “
Thermomagnetic instabilities in a vertical layer of ferrofluid: Nonlinear analysis away from a critical point
,”
Fluid Dyn. Res.
48
,
061404
(
2016
).
30.
A.
Mahajan
and
M. K.
Sharma
, “
Penetrative convection in magnetic nanofluids via internal heating
,”
Phys. Fluids
29
,
034101
(
2017
).
31.
A.
Mahajan
and
H.
Parashar
, “
Linear and weakly nonlinear stability analysis on a rotating anisotropic ferrofluid layer
,”
Phys. Fluids
32
,
024101
(
2020
).
32.
A. C.
Melson
,
G. N.
Sekhar
, and
P. G.
Siddheshwar
, “
Nonlinear analysis of effect of rigid body rotation on ferroconvection
,”
ASME J. Heat Transfer
142
,
061802
(
2020
).
33.
L. M.
Pérez
,
J.
Bragard
,
H. L.
Mancini
,
P.
Díaz
,
D.
Laroze
, and
H.
Pleiner
, “
Magneto-viscous effect on thermal convection thresholds in an Oldroyd magnetic fluid
,”
J. Magn. Magn. Mater.
444
,
432
(
2017
).
34.
D.
Laroze
and
H.
Pleiner
, “
Thermal convection in a nonlinear non-Newtonian magnetic fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
26
,
167
(
2015
).
35.
L. M.
Pérez
,
D.
Laroze
,
P.
Diaz
,
J.
Martinez-Mardones
, and
H. L.
Mancini
, “
Rotating convection in a viscoelastic magnetic fluid
,”
Journal of Magnetism Magnetic Materials
364
,
98
(
2014
).
36.
D.
Laroze
,
J.
Martinez-Mardones
, and
H.
Pleiner
, “
Bénard–Marangoni instability in a viscoelastic ferrofluid
,”
Eur. Phys. J. Spec. Topic
219
,
71
(
2013
).
37.
L. M.
Pérez
,
J.
Bragard
,
D.
Laroze
,
J.
Martinez-Mardones
, and
H.
Pleiner
, “
Thermal convection thresholds in an Oldroyd magnetic fluid
,”
J. Magn. Magn. Mater.
323
,
691
(
2011
).
38.
D.
Laroze
,
J.
Martinez-Mardones
,
L. M.
Pérez
, and
R. G.
Rojas
, “
Stationary thermal convection in a viscoelastic ferrofluid
,”
J. Magn. Magn. Mater.
322
,
3576
(
2010
).
39.
D.
Laroze
,
J.
Martinez-Mardones
, and
L. M.
Pérez
, “
Amplitude equation for stationary convection in a viscoelastic ferrofluid
,”
Int. J. Bifurcat. Chaos
20
,
235
(
2010
).
40.
D.
Laroze
,
J.
Martinez-Mardones
,
L. M.
Pérez
, and
Y.
Rameshwar
, “
Amplitude equation for stationary convection in a rotating binary ferrofluid
,”
Int. J. Bifurcat. Chaos
19
,
2755
2764
(
2009
).
41.
D.
Laroze
,
J.
Martinez-Mardones
,
J.
Bragard
, and
P.
Vargas
, “
Convection in rotating binary ferrofluid
,”
Phys. A
371
,
46
(
2006
).
42.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
43.
M.
Giglio
,
S.
Musazzi
, and
U.
Perini
, “
Transition to chaotic behavior via a reproducible sequence of period-doubling bifurcations
,”
Phys. Rev. Lett.
47
,
243
246
(
1981
).
44.
J. B.
McLaughlin
and
S. A.
Orszag
, “
Transition from periodic to chaotic thermal convection
,”
J. Fluid Mech.
122
,
123
142
(
1982
).
45.
W.
Decker
,
W.
Pesch
, and
A.
Weber
, “
Spiral defect chaos in Rayleigh–Bénard convection
,”
Phys. Rev. Lett.
75
,
648
651
(
1994
).
46.
H.
Ishida
,
S.
Kawase
, and
H.
Kimoto
, “
The second largest Lyapunov exponent and transition to chaos of natural convection in a rectangular cavity
,”
Int. J. Heat Mass Transfer
49
,
5035
5048
(
2006
).
47.
J. C.
Sprott
, “
Simplifications of the Lorenz attractor
,”
Nonlinear Dyn. Psychol. Life Sci.
13
,
271
278
(
2009
).
48.
R.
Barrio
and
S.
Serrano
, “
Bounds for the chaotic region in the Lorenz model
,”
Phys. D
238
,
1615
1624
(
2009
).
49.
P.
Vadasz
, “
Analytical prediction of the transition to chaos in Lorenz equations
,”
Appl. Math. Lett.
23
,
503
507
(
2010
).
50.
D.
Puigjaner
,
J.
Herrero
,
C.
Simó
, and
F.
Giralt
, “
From steady solutions to chaotic flows in a Rayleigh–Bénard problem at moderate Rayleigh numbers
,”
Phys. D
240
,
920
934
(
2011
).
51.
X.
Wang
and
G.
Chen
, “
Constructing a chaotic system with any number of equilibria
,”
Nonlinear Dyn.
71
,
429
436
(
2013
).
52.
S.
Paul
and
M. K.
Varma
, “
Bifurcation analysis of the flow patterns in two dimensional Rayleigh–Bénard convection
,”
Int. J. Bifurcat. Chaos
22
,
1230018
(
2012
).
53.
C.
Sparrow
,
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
(
Springer Verlag
,
New York
,
1982
).
54.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
, 2nd ed. (
Springer-Verlag
,
New York
,
1992
).
55.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Westview Press
,
MA
,
1994
).
56.
R. C.
Hilborn
,
Chaos and Nonlinear Dynamics
(
Oxford University Press
,
1999
).
57.
A. A.
Bozhko
and
G. F.
Putin
, “
Heat transfer and flow patterns in ferrofluid convection
,”
Magnetohydrodynamics
39
,
147
169
(
2003
).
58.
D.
Laroze
,
P. G.
Siddheshwar
, and
H.
Pleiner
, “
Chaotic convection in a ferrofluid
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
2436
2447
(
2013
).
59.
M.
Clerc
,
P.
Coullet
, and
E.
Tirapegui
, “
Lorenz bifurcation: Instabilities in quasireversible systems
,”
Phys. Rev. Lett.
83
,
3820
3823
(
1999
).
60.
B.
Saltzman
, “
Finite amplitude free convection as an initial value problem-I
,”
J. Atmos. Sci.
19
,
329
341
(
1962
).
61.
D.
Roy
and
Z. E.
Musielak
, “
Generalized Lorenz models and their routes to chaos. I. Energy-conserving vertical mode truncations
,”
Chaos Solitons Fracals
32
,
1038
1052
(
2007
).
62.
D.
Roy
and
Z. E.
Musielak
, “
Generalized Lorenz models and their routes to chaos. II. Energy-conserving vertical mode truncations
,”
Chaos Solitons Fracals
31
,
747
756
(
2007
).
63.
D. E.
Musielak
,
Z. E.
Musielak
, and
K. S.
Kennamer
, “
The onset of chaos in nonlinear dynamical systems determined with a new fractal technique
,”
Fractals
13
,
19
31
(
2004
).
64.
Z. E.
Musielak
and
D. E.
Musielak
, “
High-dimensional chaos in dissipative and driven dynamical system
,”
Int. J. Bifurcat. Chaos
19
,
2823
2869
(
2009
).
65.
B.
Shen
, “
Nonlinear feedback in a five-dimensional Lorenz model
,”
J. Atmos. Sci.
71
,
1701
1723
(
2014
).
66.
K. R.
Rajagopal
,
M.
Ruzicka
, and
A. R.
Srinivasa
, “
On the Oberbeck–Boussinesq approximation
,”
Math. Models Methods Appl. Sci.
8
,
1157
1167
(
1996
).
67.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon Press
,
Oxford
,
1961
).
68.
P.
Bergé
,
Y.
Pomeau
, and
C.
Vidal
,
Order Within Chaos: Towards a Deterministic Approach to Turbulence
(
John Wiley & Sons
,
New York
,
1987
).
69.
C.
Kanchana
,
Y.
Su
, and
Y.
Zhao
, “
Regular and chaotic Rayleigh–Bénard convective motions in methanol and water
,”
Commun. Nonlinear Sci. Numer. Simul.
83
,
105129
(
2020
).
70.
E. N.
Lorenz
, “
The local structure of a chaotic attractor in four dimensions
,”
Phys. D
13
,
90
104
(
1984
).
71.
P. G.
Siddheshwar
and
D.
Radhakrishna
, “
Linear and nonlinear electroconvection under AC electric field
,”
Communication in Nonlinear Science and Numerical Simulation
17
,
2883
2895
(
2012
).
72.
J. P.
Gollub
and
S. V.
Benson
, “
Many routes to turbulent convection
,”
J. Fluid Mech.
100
,
449
(
1980
).
73.
J. H.
Curry
,
J. R.
Herring
,
J.
Loncaric
, and
S. A.
Orszag
, “
Order and disorder in two- and three-dimensional Bénard convection
,”
J. Fluid Mech.
147
,
1
(
1984
).
74.
H.
Yahata
, “
Transition to turbulence in the Rayleigh–Beńard convection
,”
Progr. Theor. Phys.
68
,
1070
(
1982
).
75.
H.
Yahata
, “
Period-doubling cascade in the Rayleigh–Bénard convection
,”
Progr. Theoret. Phys.
69
,
1802
(
1983
).
76.
A.
Glukhovskii
and
F.
Dolzhanskii
, “
Three-component geostrophic models of convection in a rotating fluid
,”
Akademiia Nauk SSSR Fizika Atmosfery i Okeana
(Published by The Russian Academy of Sciences ISSN: 0002-3515)
16
,
451
162
(
1980
).
77.
I.
Garashchuk
,
N.
Kudryashov
, and
D.
Sinelshchikov
, “
On the analytical properties and some exact solutions of the Glukhovsky–Dolzhansky system
,”
J. Phys.: Conf. Ser.
788
,
012013
(
2017
).
78.
N.
Kuznetsov
,
G.
Leonov
, and
T.
Mokaev
, “Hidden attractor in the Rabinovich system,” arXiv 1504, 04723 (2015).
79.
G.
Leonov
,
N.
Kuznetsov
, and
T.
Mokaev
, “
Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion
,”
Eur. Phys. J. Spec. Topic
224
,
1421
1458
(
2015
).
80.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Phys. D
16
,
285
317
(
1985
).
81.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
2003
).
82.
J. A. C.
Gallas
, “
The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows
,”
Int. J. Bifurcat. Chaos
20
,
197
211
(
2010
).
83.
L. M.
Pérez
,
J.
Bragard
,
H. L.
Mancini
,
J. A. C.
Gallas
,
A. M.
Cabanas
,
O. J.
Suarez
, and
D.
Laroze
, “
Effect of anisotropies on the magnetization dynamics
,”
Netw. Heterog. Media
10
,
209
221
(
2015
).
84.
J. A.
Vélez
,
J.
Bragard
,
L. M.
Pérez
,
A. M.
Cabanas
,
O. J.
Suarez
,
D.
Laroze
, and
H. L.
Mancini
, “
Periodicity characterization of the nonlinear magnetization dynamics
,”
Chaos
30
,
093112
(
2020
).
85.
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents: A Tool to Explore Complex Dynamics
(
Cambridge University Press
,
2016
).
86.
P. C.
Rech
,
S.
Dhua
, and
N. C.
Pati
, “
Multistability and bubbling route to chaos in a deterministic model for geomagnetic field reversals
,”
Int. J. Bifurcat. Chaos
29
,
1930034
(
2019
).
87.
J. A.
Gallas
, “
Stability diagrams for a memristor oscillator
,”
Eur. Phys. J. Spec. Topic
228
,
2081
(
2019
), and references therein.
88.
R.
Barrio
,
M. Á.
Martínez
,
S.
Serrano
, and
D.
Wilczak
, “
When chaos meets hyperchaos: 4D Rössler model
,”
Phys. Lett. A
379
,
2300
2305
(
2015
).
89.
P. G.
Siddheshwar
and
P. S.
Titus
, “
Nonlinear Rayleigh–Bénard convection with variable heat source
,”
ASME J. Heat Transfer
135
,
122502
(
2013
).
90.
C. D.
Li
,
X. F.
Liao
, and
K.
Wong
, “
Lag synchronization of hyperchaos with application to secure communications
,”
Chaos, Solitons Fractals
23
,
183
193
(
2005
).
91.
K. M.
Cuomo
and
A. V.
Oppenheim
,
Circuit implementation of synchronizing chaos with applications to communications
,”
Phys. Rev. Lett.
71
,
65
68
(
1993
).
You do not currently have access to this content.