The theory of homologies introduces cell complexes to provide an algebraic description of spaces up to topological equivalence. Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its topology. The approach, however, does not consider the action of the flow on the cell complex. The procedure is here extended to take this fundamental property into account, as done with templates. The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction between its highest-dimensional cells. The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated characterization of chaotic attractors and for an accurate classification of them. The cases of a few well-known chaotic attractors are investigated—namely, the spiral and funnel Rössler attractors, the Lorenz attractor, the Burke and Shaw attractor, and a four-dimensional system. A link is established with their description in terms of templates.

1.
J.
Barrow-Green
, Poincaré and the Three Body Problem, History of Mathematics Vol. 11 (American Mathematical Society, 1997).
2.
H.
Poincaré
, “
Sur le problème des trois corps et les équations de la dynamique
,”
Acta Math.
13
,
1
270
(
1890
).
3.
H.
Poincaré
, “
Analysis situs
,”
J. l’École Polytech.
1
,
1
121
(
1895
).
4.
P. G.
Tait
, “
On knots I
,”
Trans. R. Soc. Edinb.
28
,
145
190
(
1877
).
5.
P. G.
Tait
, “
On knots II
,”
Trans. R. Soc. Edinb.
32
,
327
342
(
1884
).
6.
J. W.
Alexander
, “
A proof of the invariance of certain constants of analysis situs
,”
Trans. Am. Math. Soc.
16
,
148
154
(
1915
).
7.
J. W.
Alexander
and
G. B.
Briggs
, “
On types of knotted curves
,”
Ann. Math. II
28
,
562
586
(
1926
).
8.
K.
Reidemeister
, “
Knoten und gruppen
,”
Abh. Math. Semin. Univ. Hamburg
5
,
7
23
(
1927
).
9.
V. K.
Mel’nikov
, “
On the stability of a center for time-periodic perturbations
,”
Tr. Mosk. Mat. Obs.
12
,
3
52
(
1963
) (in Russian).
10.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
11.
R. F.
Williams
, “
Expanding attractors
,”
Publ. Math. l’Inst. Hautes Études Sci.
43
,
169
203
(
1974
).
12.
J.
Birman
and
R. F.
Williams
, “
Knotted periodic orbits in dynamical systems I. Lorenz’s equations
,”
Topology
22
,
47
82
(
1983
).
13.
G. B.
Mindlin
and
R.
Gilmore
, “
Topological analysis and synthesis of chaotic time series
,”
Physica D
58
,
229
242
(
1992
).
14.
R. W.
Ghrist
,
P. J.
Holmes
, and
M. C.
Sullivan
, “Knots and links in three-dimensional flows,” in Lecture Notes in Mathematics (Springer, Berlin, 1997), Vol. 1654.
15.
R.
Gilmore
, “
Topological analysis of chaotic dynamical systems
,”
Rev. Mod. Phys.
70
,
1455
1529
(
1998
).
16.
N. B.
Tufillaro
,
T.
Abbott
, and
J.
Reilly
,
An Experimental Approach to Nonlinear Dynamics and Chaos
(
Addison-Wesley
,
Redwood City, CA
,
1992
).
17.
D.
Ruelle
and
F.
Takens
, “
On the nature of turbulence
,”
Commun. Math. Phys.
20
,
167
192
(
1971
).
18.
R.
Gilmore
and
M.
Lefranc
,
The Topology of Chaos
(
Wiley
,
2003
).
19.
C.
Letellier
,
E.
Roulin
, and
O. E.
Rössler
, “
Inequivalent topologies of chaos in simple equations
,”
Chaos Solitons Fractals
28
,
337
360
(
2006
).
20.
C.
Letellier
, “
Branched manifolds for the three types of unimodal maps
,”
Commun. Nonlinear Sci. Numer. Simul.
101
,
105869
(
2021
).
21.
E.
Betti
, “
Sopra gli spazi di un numero qualunque di dimensioni
,”
Ann. Mat. Pura Appl.
2
,
140
158
(
1871
).
22.
H.
Poincaré
, “
Second complément à l’analysis situs
,”
Proc. London Math. Soc.
s1–32
,
277
308
(
1900
).
23.
L.
Vietoris
, “
über den höheren zusammenhang kompakter räume und eine klasse von zusammenhangstreuen abbildungen
,”
Math. Ann.
97
,
454
472
(
1927
).
24.
H.
Hopf
, “
Verbessert in eine verallgemeinerung der Euler-Poincaréschen formel
,”
Nachr. Göttinger Akad. Wiss.
1928
,
127
136
.
25.
H.
Hopf
, “
A new proof of the Lefschetz formula for invariant points
,”
Proc. Natl. Acad. Sci. U.S.A.
14
,
149
153
(
1928
).
26.
W.
Mayer
, “
Über abstrakte topologie
,”
Monatsch. Math. Phys.
36
,
1
42
(
1929
).
27.
J.
Dieudonné
,
A History of Algebraic and Differential Topology 1900–1960
(
Birkhäuser
,
Boston, MA
,
1989
).
28.
C. A.
Weibel
, “History of homological algebra,” in History of Topology, edited by I. James (North-Holland, Amsterdam, 1999), pp. 797–836.
29.
E.
Noether
, “
Ableitung der elementarteilertheorie aus der gruppentheorie
,”
Jahresber. Deutsch. Math.-Ver.
34
,
104
(
1926
).
30.
L. C.
Kinsey
,
Topology of Surfaces
(
Springer-Verlag
,
New York
,
1993
).
31.
J. R.
Munkres
,
Elements of Algebraic Topology
(
CRC Press
,
2018
).
32.
M. R.
Muldoon
,
R. S.
MacKay
,
J. P.
Huke
, and
D. S.
Broomhead
, “
Topology from time series
,”
Physica D
65
,
1
16
(
1993
).
33.
D.
Sciamarella
and
G. B.
Mindlin
, “
Topological structure of chaotic flows from human speech data
,”
Phys. Rev. Lett.
82
(
7
),
1450
1453
(
2001
).
34.
D.
Sciamarella
and
G. B.
Mindlin
, “
Unveiling the topological structure of chaotic flows from data
,”
Phys. Rev. E
64
,
036209
(
2001
).
35.
G. D.
Charó
,
G.
Artana
, and
D.
Sciamarella
, “
Topology of dynamical reconstructions from Lagrangian data
,”
Physica D
405
,
132371
(
2020
).
36.
G. D.
Charó
,
G.
Artana
, and
D.
Sciamarella
, “
Topological colouring of fluid particles unravels finite-time coherent sets
,”
J. Fluid Mech.
923
,
A17
(
2021
).
37.
K.
Mischaikow
,
M.
Mrozek
,
J.
Reiss
, and
A.
Szymczak
, “
Construction of symbolic dynamics from experimental time series
,”
Phys. Rev. Lett.
82
,
1144
1147
(
1999
).
38.
M.
Lefranc
, “
Alternative determinism principle for topological analysis of chaos
,”
Phys. Rev. E
74
,
035202
(
2006
).
39.
M.
Lefranc
, “Reflections from the fourth dimension,” in Topology and Dynamics of Chaos, edited by C. Letellier and R. Gilmore (World Scientific Publishing, 2013), pp. 205–226.
40.
S.
Neukirch
and
H.
Giacomini
, “
Shape of attractors for three-dimensional dissipative dynamical systems
,”
Phys. Rev. E
61
,
5098
5107
(
2000
).
41.
T. D.
Tsankov
and
R.
Gilmore
, “
Strange attractors are classified by bounding tori
,”
Phys. Rev. Lett.
91
,
134104
(
2003
).
42.
T. D.
Tsankov
and
R.
Gilmore
, “
Topological aspects of the structure of chaotic attractors in |$\mathbb {R}^{3}$|
,”
Phys. Rev. E
69
,
056206
(
2004
).
43.
M.
Rosalie
and
C.
Letellier
, “
Systematic template extraction from chaotic attractors: I. Genus-one attractors with an inversion symmetry
,”
J. Phys. A: Math. Theor.
46
,
375101
(
2013
).
44.
C.
Letellier
,
P.
Dutertre
, and
B.
Maheu
, “
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,”
Chaos
5
,
271
282
(
1995
).
45.
R.
Miranda
and
E.
Stone
, “
The proto-Lorenz system
,”
Phys. Lett. A
178
,
105
113
(
1993
).
46.
C.
Letellier
and
G.
Gouesbet
, “
Topological characterization of a system with high-order symmetries: The proto-Lorenz system
,”
Phys. Rev. E
52
,
4754
4761
(
1995
).
47.
J.
Birman
and
R. F.
Williams
, “
Knotted periodic orbits in dynamical systems II. Knot holders for fibred knots
,”
Contemp. Math.
20
,
1
60
(
1983
).
48.
D.
Rolfsen
,
Knots and Links
(
AMS Chelsea Publishing
,
1976
).
49.
R.
Ghrist
,
Elementary Applied Topology
, 1st ed. (
Createspace
,
2014
).
50.
G. D.
Charó
,
M. D.
Chekroun
,
D.
Sciamarella
, and
M.
Ghil
, “
Noise-driven topological changes in chaotic dynamics
,”
Chaos
31
(
10
),
103115
(
2021
).
51.
D. D.
Nolte
, “
The tangled tale of phase space
,”
Phys. Today
63
(
4
),
33
38
(
2010
).
52.
C.
Letellier
,
L. A.
Aguirre
, and
J.
Maquet
, “
Relation between observability and differential embeddings for nonlinear dynamics
,”
Phys. Rev. E
71
,
066213
(
2005
).
53.
C.
Letellier
and
R.
Gilmore
, “
Covering dynamical systems: Two-fold covers
,”
Phys. Rev. E
63
,
016206
(
2001
).
54.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
55.
C.
Letellier
,
N.
Stankevich
, and
O. E.
Rössler
, “
Dynamical taxonomy: Some taxonomic ranks to systematically classify every chaotic attractor
,”
Int. J. Bifurcation Chaos
32
,
2230004
(
2022
).
56.
O. E.
Rössler
, “
Chaotic behavior in simple reaction system
,”
Z. Naturforsch. A Phys. Sci.
31
,
259
264
(
1976
).
57.
R.
Shaw
, “
Strange attractor, chaotic behavior and information flow
,”
Z. Naturforsch. A Phys. Sci.
36
,
80
112
(
1981
).
58.
C.
Letellier
,
P.
Dutertre
,
J.
Reizner
, and
G.
Gouesbet
, “
Evolution of multimodal map induced by an equivariant vector field
,”
J. Phys. A: Math. Gen.
29
,
5359
5373
(
1996
).
59.
C.
Letellier
,
T. D.
Tsankov
,
G.
Byrne
, and
R.
Gilmore
, “
Large-scale structural reorganization of strange attractors
,”
Phys. Rev. E
72
,
026212
(
2005
).
60.
B.
Deng
, “
Constructing homoclinic orbits and chaotic attractors
,”
Int. J. Bifurcation Chaos
4
,
823
841
(
1994
).
61.
D. S.
Broomhead
,
R.
Jones
, and
G. P.
King
, “
Topological dimension and local coordinates from time series data
,”
J. Phys. A: Math. Gen.
20
,
L563
L569
(
1987
).
62.
G. D.
Charó
,
D.
Sciamarella
,
S.
Mangiarotti
,
G.
Artana
, and
C.
Letellier
, “
Equivalence between the unsteady double-gyre system and a 4D autonomous conservative chaotic system
,”
Chaos
29
(
12
),
123126
(
2019
).
63.
M.
Rosalie
and
C.
Letellier
, “
Systematic template extraction from chaotic attractors: II. Genus-one attractors with multiple unimodal folding mechanisms
,”
J. Phys. A: Math. Gen.
48
,
235101
(
2015
).

Supplementary Material

You do not currently have access to this content.