The nonlinear dynamics of a FitzHugh–Nagumo (FHN) neuron driven by an oscillating current and perturbed by a Gaussian noise signal with different intensities D is investigated. In the noiseless case, stable periodic structures [Arnold tongues (ATS), cuspidal and shrimp-shaped] are identified in the parameter space. The periods of the ATSs obey specific generating and recurrence rules and are organized according to linear Diophantine equations responsible for bifurcation cascades. While for small values of D, noise starts to destroy elongations (“antennas”) of the cuspidals, for larger values of D, the periodic motion expands into chaotic regimes in the parameter space, stabilizing the chaotic motion, and a transient chaotic motion is observed at the periodic-chaotic borderline. Besides giving a detailed description of the neuronal dynamics, the intriguing novel effect observed for larger D values is the generation of a regular dynamics for the driven FHN neuron. This result has a fundamental importance if the complex local dynamics is considered to study the global behavior of the neural networks when parameters are simultaneously varied, and there is the necessity to deal the intrinsic stochastic signal merged into the time series obtained from real experiments. As the FHN model has crucial properties presented by usual neuron models, our results should be helpful in large-scale simulations using complex neuron networks and for applications.

1.
B. R. R.
Boaretto
,
C.
Manchein
,
T. L.
Prado
, and
S. R.
Lopes
, “
The role of individual neuron ion conductances in the synchronization processes of neuron networks
,”
Neural Netw.
137
,
97
(
2021
).
2.
A. L.
Hodgkin
and
A. F.
Huxley
,
J. Physiol. (Lond.)
117
,
500
(
1952
).
3.
R.
Fitzhugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
(
1961
).
4.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “An active pulse transmission line simulating nerve axon,”
Proc. IRE
50
,
2061
(
1962
).
5.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Non-Equilibrium Systems
(
Wiley
,
New York
,
1977
).
6.
C. H.
Ko
, “
Emergence of noise-induced oscillations in the central circadian pacemaker
,”
PLoS Biol.
8
,
e1000513
(
2010
).
7.
A.
Destexhe
,
Neuronal Noise
(
Springer
,
New York
,
2012
).
8.
X. J.
Cao
and
D.
Oertel
, “
Temperature affects voltage-sensitive conductances differentially in octopus cells of the mammalian cochlear nucleus
,”
J. Neurophysiol.
94
,
821
832
(
2005
).
9.
C.
Koch
,
Biophysics of Computation
(
Oxford University Press
,
New York
,
1999
).
10.
P.
Lauger
, “
Current noise generated by electrogenic ion pumps
,”
Eur. Biophys. J.
11
,
117
(
1984
).
11.
B.
Lindner
,
J.
García-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
, “
Effects of noise in excitable systems
,”
Phys. Rep.
392
,
321
(
2004
).
12.
R.
Toral
,
C. R.
Mirasso
, and
J. D.
Gunton
, “
System size coherence resonance in coupled FitzHugh–Nagumo models
,”
Europhys. Lett.
61
,
162
(
2003
).
13.
V. A.
Makarov
,
V. I.
Nekorkin
, and
M. G.
Velarde
, “
Spiking behavior in a noise-driven system combining oscillatory and excitatory properties
,”
Phys. Rev. Lett.
86
,
3431
(
2001
).
14.
A. S.
Pikovsky
and
J.
Kurths
, “
Coherence resonance in a noise-driven excitable system
,”
Phys. Rev. Lett.
78
,
775
(
1997
).
15.
X.
Lang
,
Q.
Lu
, and
J.
Kurths
, “
Phase synchronization in noise-driven bursting neurons
,”
Phys. Rev. E
82
,
021909
(
2010
).
16.
Z. Q.
Wang
,
Y.
Xu
, and
H.
Yang
, “
Lévy noise induced stochastic resonance in an FHN model
,”
Sci. China Technol. Sci.
59
,
371
(
2016
).
17.
C. J.
Tessone
and
H. S.
Wio
, “
Stochastic resonance in an extended FitzHugh–Nagumo system: The role of selective coupling
,”
Physica A
374
,
46
(
2007
).
18.
J. A.
Acebron
,
A. R.
Bulsara
, and
W. J.
Rappel
, “
Noisy FitzHugh–Nagumo model: From single elements to globally coupled networks
,”
Phys. Rev. E
69
,
026202
(
2004
).
19.
S. R.
Massanes
and
C. J. P.
Vicente
, “
Nonadiabatic resonances in a noisy Fitzhugh–Nagumo neuron model
,”
Phys. Rev. E
59
,
4490
(
1999
).
20.
A.
Longtin
and
D.
Chialvo
, “
Stochastic and deterministic resonances for excitable systems
,”
Phys. Rev. Lett.
81
,
4012
(
1998
).
21.
D.
Nozaki
and
Y.
Yamamoto
, “
Enhancement of stochastic resonance in a FitzHugh–Nagumo neuronal model driven by colored noise
,”
Phys. Lett. A
243
,
281
(
1998
).
22.
J. J.
Collins
,
C. C.
Chow
, and
T. T.
Imhoff
, “
Aperiodic stochastic resonance in excitable systems
,”
Phys. Rev. E
52
,
R3321
(
1995
).
23.
K.
Wiesenfeld
,
D.
Pierson
,
E.
Pantazelou
,
C.
Dames
, and
F.
Moss
, “
Stochastic resonance on a circle
,”
Phys. Rev. Lett.
72
,
2125
(
1994
).
24.
E. V.
Pankratova
,
A. V.
Polovinkin
, and
B.
Spagnolo
, “
Suppression of noise in FitzHugh–Nagumo model driven by a strong periodic signal
,”
Phys. Lett. A
344
,
43
(
2005
).
25.
L. L.
Lu
,
M. Y.
Ge
,
Y.
Xu
, and
Y.
Jia
, “
Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model
,”
Physica A
535
,
122419
(
2019
).
26.
C.
Zeng
,
C.
Zeng
,
A.
Gong
, and
L.
Nie
, “
Effect of time delay in FitzHugh–Nagumo neural model with correlations between multiplicative and additive noises
,”
Physica A
389
,
5117
(
2010
).
27.
Y. G.
Yao
,
C. Z.
Ma
,
C. J.
Wang
,
M.
Yi
, and
R.
Gui
, “
Detection of sub-threshold periodic signal by multiplicative and additive cross-correlated sine-Wiener noises in the FitzHugh–Nagumo neuron
,”
Physica A
492
,
1247
(
2018
).
28.
Y. F.
Guo
,
L. J.
Wang
,
F.
Wei
, and
J. G.
Tan
, “
Dynamical behavior of simplified FitzHugh–Nagumo neural system driven by Lévy noise and Gaussian white noise
,”
Chaos Solitons Fractals
127
,
118
(
2019
).
29.
Y. F.
Guo
,
L. J.
Wang
,
Q.
Dong
, and
X. J.
Lou
, “
Dynamical complexity of Fitzhugh–Nagumo neuron model driven by Lévy noise and Gaussian white noise
,”
Math. Comput. Simulat.
181
,
430
(
2020
).
30.
J. A. C.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
31.
Y.
Lai
and
T.
Tél
, Transient Chaos: Complex Dynamics on Finite Time Scales, 2011 ed., Applied Mathematical Sciences (Springer-Verlag, New York, 2011).
32.
S.
Zambrano
,
I. P.
Mario
,
J. M.
Seoane
,
M. A. F.
Sanjuán
,
S.
Euzzor
,
A.
Geltrude
,
R.
Meucci
, and
F. T.
Arecchi
, “
Synchronization of uncoupled excitable systems induced by white and coloured noise
,”
New J. Phys.
12
,
053040
(
2010
).
33.
N. A.
Kudryashov
, “
Asymptotic and exact solutions of the FitzHugh–Nagumo model
,”
Regul. Chaot. Dyn.
23
,
152
(
2018
).
34.
L.
Santana
,
R. M.
da Silva
,
H. A.
Albuquerque
, and
C.
Manchein
, “
Transient dynamics and multistability in two electrically interacting FitzHugh–Nagumo neurons
,”
Chaos
31
,
053107
(
2021
).
35.
J. E.
Parker
and
K. M.
Short
, “
Sigmoidal synaptic learning produces mutual stabilization in chaotic FitzHugh–Nagumo model
,”
Chaos
30
,
063108
(
2020
).
36.
Q.
Xu
and
D.
Zhu
, “
FPGA-based experimental validations of electrical activities in two adjacent FitzHugh–Nagumo neurons coupled by memristive electromagnetic induction
,”
IETE Tech. Rev.
38
(6),
563
(
2020
).
37.
E.
Adomaitienė
,
S.
Ašmontas
,
S.
Bumelienė
, and
A.
Tamaševičius
, “
Quenching coupled FitzHugh–Nagumo oscillators by repulsive feedback
,”
Phys. Scr.
95
,
105202
(
2020
).
38.
G.
Ruzzene
,
I.
Omelchenko
,
J.
Sawicki
,
A.
Zakharova
,
E.
Schöll
, and
R. G.
Andrzejak
, “
Remote pacemaker control of chimera states in multilayer networks of neurons
,”
Phys. Rev. E
102
,
052216
(
2020
).
39.
E.
Adomaitienė
,
S.
Ašmontas
,
S.
Bumelienė
, and
A.
Tamaševičius
, “
Local control of an array of the diffusively coupled FitzHugh–Nagumo oscillators via repulsive mean field
,”
J. Appl. Phys.
128
,
074902
(
2020
).
40.
A.
Saha
and
U.
Feudel
, “
Characteristics of in-out intermittency in delay-coupled FitzHugh–Nagumo oscillators
,”
Eur. Phys. J. Spec. Top.
227
,
1205
(
2018
).
41.
A.
Saha
and
U.
Feudel
, “
Extreme events in FitzHugh–Nagumo oscillators coupled with two time delays
,”
Phys. Rev. E
95
,
062219
(
2017
).
42.
A.
Hoff
,
J. V.
dos Santos
,
C.
Manchein
, and
H. A.
Albuquerque
, “
Numerical bifurcation analysis of two coupled FitzHugh–Nagumo oscillators
,”
Eur. Phys. J. B
87
,
151
(
2014
).
43.
G.
Zhao
,
Z.
Hou
, and
H.
Xin
, “
Frequency-selective response of periodically forced coupled FHN models via system size multi-resonance
,”
Phys. Chem. Chem. Phys.
7
,
3634
3638
(
2005
).
44.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
(
1985
).
45.
T.
Schreiber
and
H.
Kantz
, “
Noise in chaotic data: Diagnosis and treatment
,”
Chaos
5
,
133
(
1995
).
46.
R. L.
Honeycutt
, “
Stochastic Runge–Kutta algorithms. I. White noise
,”
Phys. Rev. A
45
,
600
(
1992
).
47.
B.
Lingnau
,
K.
Shortiss
,
F.
Dubois
,
F. H.
Peters
, and
B.
Kelleher
, “
Universal generation of devil’s staircases near Hopf bifurcations via modulated forcing of nonlinear systems
,”
Phys. Rev. E
102
,
030201
(
2020
).
48.
C.
Manchein
,
R. M.
da Silva
, and
M. W.
Beims
, “
Proliferation os stability in phase and parameter spaces of nonlinear systems
,”
Chaos
27
,
081101
(
2017
).
49.
L.
Glass
and
R.
Perez
, “
Fine structure of phase locking
,”
Phys. Rev. Lett.
48
,
1772
(
1982
).
50.
C.
Bonatto
and
J. A. C.
Gallas
, “
Accumulation boundaries: Codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric, and chemical oscillators
,”
Philos. Trans. R. Soc. A
366
,
505
(
2008
).
51.
R. E.
Ecke
,
J. D.
Farmer
, and
D. K.
Umberger
, “
Scaling of the Arnold tongues
,”
Nonlinearity
2
,
175
(
1989
).
52.
H. G.
Schuster
and
W.
Just
,
Deterministic Chaos: An Introduction
(
Wiley-VCH
,
Weinheim
,
2005
).
53.
C. C.
Felício
and
P. C.
Rech
, “
Arnold tongues and the Devil’s staircase in a discrete-time Hindmarsh–Rose neuron model
,”
Phys. Lett. A
379
,
2845
(
2015
).
54.
F. T.
Arecchi
,
R.
Badii
, and
A.
Politi
, “
Generalized multistability and noise-induced jumps in a nonlinear dynamical system
,”
Phys. Rev. A
32
,
402
(
1985
).
55.
J. A.
Kelso
, “
Multistability and metastability: Understanding dynamic coordination in the brain
,”
Philos. Trans. R. Soc. London, B
367
(
1591
),
906
(
2012
).
56.
V.
Wiggers
and
P. C.
Rech
, “
Multistability and organization of periodicity in a van der Pol–Duffing oscillator
,”
Chaos Solitons Fractals
103
,
632
637
(
2017
).
57.
D. K.
Bandy
,
E. K. T.
Burton
,
J. R.
Hall
,
D. M.
Chapman
, and
J. T.
Elrod
, “
Predicting attractor characteristics using Lyapunov exponents in a laser with injected signal
,”
Chaos
31
,
013120
(
2021
).
58.
B. R. R.
Boaretto
,
R. C.
Budzinski
,
K. L.
Rossi
,
C.
Manchein
,
T. L.
Prado
,
U.
Feudel
, and
S. R.
Lopes
, “
Bistability in the synchronization of identical neurons
,”
Phys. Rev. E
104
,
024204
(
2021
).
59.
J. C.
Alexander
,
J. A.
Yorke
,
Z.
You
, and
I.
Kan
, “
Riddled basins
,”
Int. J. Bifurcat. Chaos
02
,
795
(
1992
).
You do not currently have access to this content.