Studies to date on the role of social exclusion in public cooperation have mainly focused on the peer or pool sanctioning types of excluding free-riders from the share of common goods. However, the exclusive behaviors are not necessarily performed by individuals or local organizations but may rather be implemented by a centralized enforcement institution at a global scale. Besides, previous modeling methods of either peer or pool exclusion often presuppose some particular forms of feedback between the individual or collective efforts and the efficiency of social exclusion and, therefore, cannot comprehensively evaluate their effects on the evolution of cooperation in the social dilemma situations. Here, we construct a general model of global exclusion by considering the successful construction of the centralized exclusive institution as an arbitrary non-decreasing and smooth function of the collective efforts made by the global excluders and then theoretically analyze its potential impacts in the replicator dynamics of the public goods game. Interestingly, we have shown that, despite the presence of both the first- and second-order free-riding problems, global exclusion can indeed lead to the emergence or even stabilization of public cooperation without the support of any other evolutionary mechanism. In addition, we have also observed rich dynamical behaviors, such as the occurrence of a global or local family of neutrally stable closed orbits revolving around a nonlinear center or the existence of stable heteroclinic cycles between defectors, cooperators as well as global excluders, which give rise to a classification of up to 21 different phases.

1.
P.
Taylor
and
L.
Jonker
, “
Evolutionary stable strategies and game dynamics
,”
Math. Biosci.
40
,
145
(
1978
).
2.
P.
Schuster
and
K.
Sigmund
, “
Replicator dynamics
,”
J. Theor. Biol.
100
,
533
(
1983
).
3.
J.
Hofbauer
and
K.
Sigmund
,
Evolutionary Games and Population Dynamics
(
Cambridge University Press
,
Cambridge, UK
,
1998
).
4.
W. H.
Sandholm
,
Population Games and Evolutionary Dynamics
(
MIT University Press
,
Cambridge, MA
,
2010
).
5.
K.
Sigmund
,
The Calculus of Selfishness
(
Princeton University Press
,
Princeton, NJ
,
2010
).
6.
M.
Perc
,
J.
Gómez-Gardeñes
,
A.
Szolnoki
,
L. M.
Floría
, and
Y.
Moreno
, “
Evolutionary dynamics of group interactions on structured populations: A review
,”
J. R. Soc. Interface
10
,
20120997
(
2013
).
7.
C.
Hauert
,
N.
Haiden
, and
K.
Sigmund
, “
The dynamics of public goods
,”
Discrete Contin. Dyn. Syst. B
4
,
575
(
2004
).
8.
C.
Hauert
,
S.
De Monte
,
J.
Hofbauer
, and
K.
Sigmund
, “
Volunteering as red queen mechanism for cooperation in public goods game
,”
Science
296
,
1129
(
2002
).
9.
F. C.
Santos
,
M. D.
Santos
, and
J. M.
Pacheco
, “
Social diversity promotes the emergence of cooperation in public goods games
,”
Nature
454
,
213
(
2008
).
10.
J.
Wang
,
F.
Fu
,
T.
Wu
, and
L.
Wang
, “
Emergence of social cooperation in threshold public good games with collective risk
,”
Phys. Rev. E
80
,
016101
(
2009
).
11.
A.
Arenas
,
J.
Camacho
,
J. A.
Cuesta
, and
R.
Requejo
, “
The joker effect: Cooperation driven by destructive agents
,”
J. Theor. Biol.
279
,
113
(
2011
).
12.
K.
Sigmund
, “
Punish or perish? Retailation and collaboration among humans
,”
Trends Ecol. Evol.
22
,
593
(
2007
).
13.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
,
Z.
Wang
,
S.
Boccaletti
, and
A.
Szolnoki
, “
Statistical physics of human cooperation
,”
Phys. Rep.
687
,
1
(
2017
).
14.
L.
Chen
,
J.
Sun
,
K.
Li
, and
Q.
Li
, “
Research on the effectiveness of monitoring mechanism for “yield to pedestrian” based on system dynamics
,”
Physica A
591
,
126804
(
2022
).
15.
T.
Sasaki
and
S.
Uchida
, “
The evolution of cooperation by social exclusion
,”
Proc. R. Soc. B
280
,
20122498
(
2013
).
16.
K.
Li
,
R.
Cong
,
T.
Wu
, and
L.
Wang
, “
Social exclusion in finite populations
,”
Phys. Rev. E
91
,
042810
(
2015
).
17.
K.
Li
,
R.
Cong
, and
L.
Wang
, “
Cooperation induced by random sequential exclusion
,”
EPL
114
,
58001
(
2016
).
18.
A.
Szolnoki
and
X.
Chen
, “
Alliance formation with exclusion in the spatial public goods game
,”
Phys. Rev. E
95
,
052316
(
2017
).
19.
L.
Liu
,
X.
Chen
, and
M.
Perc
, “
Evolutionary dynamics of cooperation in the public goods game with pool exclusion strategies
,”
Nonlinear Dyn.
97
,
749
(
2019
).
20.
H. K.
Khalil
,
Nonlinear Systems
(
Prentice Hall
,
Englewood Cliffs, NJ
,
2002
).
21.
T.
Sasaki
,
A.
Brännström
,
U.
Dieckmann
, and
K.
Sigmund
, “
The take-it-or-leave-it option allows small penalties to overcome social dilemmas
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
1165
(
2012
).
22.
C.
Hauert
,
F.
Michor
,
M. A.
Nowak
, and
M.
Doebeli
, “
Synergy and discounting of cooperation in social dilemmas
,”
J. Theor. Biol.
239
,
195
(
2006
).
23.
M.
Archetti
and
I.
Scheuring
, “
Coexistence of cooperation and defection in public goods games
,”
Evolution
65
,
1140
(
2011
).
24.
V. V.
Vasconcelos
,
F. C.
Santos
, and
J. M.
Pacheco
, “
A bottom-up institutional approach to cooperative governance of risky commons
,”
Nat. Clim. Change
3
,
797
(
2013
).
25.
F.
Franchetti
and
W. H.
Sandholm
, “
An introduction to Dynamo: Diagrams for evolutionary game dynamics
,”
Biol. Theory
8
,
167
(
2013
).
26.
T. A.
Han
,
L. M.
Pereira
, and
T.
Lenaerts
, “
Avoiding or restricting defectors in public goods games?
,”
J. R. Soc. Interface
12
,
20141203
(
2015
).
27.
T. A.
Han
,
T.
Lenaerts
,
F. C.
Santos
, and
L. M.
Pereira
, “
Voluntary safety commitments provide an escape from over-regulation in AI development
,”
Technol. Soc.
68
,
101843
(
2022
).
28.
S.
Wang
,
X.
Chen
, and
A.
Szolnoki
, “
Exploring optimal institutional incentives for public cooperation
,”
Commun. Nonlinear Sci. Numer. Simulat.
79
,
104914
(
2019
).
29.
M. H.
Duong
and
T. A.
Han
, “
Cost efficiency of institutional incentives for promoting cooperation in finite populations
,”
Proc. R. Soc. A
477
,
20210568
(
2021
).
30.
B.
Herrmann
,
C.
Thoni
, and
S.
Gachter
, “
Antisocial punishment across societies
,”
Science
319
,
1362
(
2008
).
31.
R.-W.
Wang
,
B.-F.
Sun
, and
Q.
Zheng
, “
Diffusive coevolution and mutualism maintenance mechanisms in a fig-fig wasp system
,”
Ecology
91
,
1308
(
2010
).
32.
D. G.
Rand
and
M. A.
Nowak
, “
The evolution of antisocial punishment in optional public goods games
,”
Nat. Commun.
2
,
434
(
2011
).
33.
M.
Salahshour
, “
Evolution of prosocial punishment in unstructured and structured populations and in the presence of antisocial punishment
,”
PLoS One
16
,
e0254860
(
2021
).
34.
M.
dos Santos
, “
The evolution of anti-social rewarding and its countermeasures in public goods games
,”
Proc. R. Soc. B
282
,
20141994
(
2015
).
35.
A.
Szolnoki
and
M.
Perc
, “
Second-order free-riding on antisocial punishment restores the effectiveness of prosocial punishment
,”
Phys. Rev. X
7
,
041027
(
2017
).
36.
A.
Szolnoki
and
M.
Perc
, “
Antisocial pool rewarding does not deter public cooperation
,”
Proc. R. Soc. B
282
,
20151975
(
2015
).
37.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer
,
New York
,
2003
).
You do not currently have access to this content.