We study how Turing pattern formation on a growing domain is affected by discrete domain discontinuities. We use the Lengyel–Epstein reaction–diffusion model to numerically simulate Turing pattern formation on radially expanding circular domains containing a variety of obstruction geometries, including obstructions spanning the length of the domain, such as walls and slits, and local obstructions, such as small blocks. The pattern formation is significantly affected by the obstructions, leading to novel pattern morphologies. We show that obstructions can induce growth mode switching and disrupt local pattern formation and that these effects depend on the shape and placement of the objects as well as the domain growth rate. This work provides a customizable framework to perform numerical simulations on different types of obstructions and other heterogeneous domains, which may guide future numerical and experimental studies. These results may also provide new insights into biological pattern growth and formation, especially in non-idealized domains containing noise or discontinuities.

1.
L.
Wolpert
, “
One hundred years of positional information
,”
Trends Genet.
12
,
359
364
(
1996
).
2.
J. B.
Green
and
J.
Sharpe
, “
Positional information and reaction-diffusion: Two big ideas in developmental biology combine
,”
Development
142
,
1203
1211
(
2015
).
3.
L.
Wolpert
, “
Positional information and the spatial pattern of cellular differentiation
,”
J. Theor. Biol.
25
,
1
47
(
1969
).
4.
K. D.
Irvine
and
C.
Rauskolb
, “
Boundaries in development: Formation and function
,”
Annu. Rev. Cell Dev. Biol.
17
,
189
214
(
2001
).
5.
H. L.
Ashe
and
J.
Briscoe
, “
The interpretation of morphogen gradients
,”
Development
133
,
385
394
(
2006
).
6.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. B: Biol. Sci.
237
,
37
72
(
1952
).
7.
A.
Gierer
and
H.
Meinhardt
, “
A theory of biological pattern formation
,”
Kybernetik
12
,
30
39
(
1972
).
8.
H.
Meinhardt
and
A.
Gierer
, “
Pattern formation by local self-activation and lateral inhibition
,”
BioEssays
22
,
753
760
(
2000
).
9.
J. W.
Saunders
and
M. T.
Gasseling
, “Ectodermal-mesenchymal interactions on the origins of wing symmetry,” in Epithelial-Mesenchymal Interactions (William & Wilkins, Baltimore, MD, 1968), pp. 78–97.
10.
A.
Cinquin
,
L.
Zheng
,
P. H.
Taylor
,
A.
Paz
,
L.
Zhang
,
M.
Chiang
,
J. J.
Snow
,
Q.
Nie
, and
O.
Cinquin
, “
Semi-permeable diffusion barriers enhance patterning robustness in the C. elegans germline
,”
Dev. Cell
35
,
405
417
(
2015
).
11.
S.
Kondo
and
R.
Asai
, “
A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus
,”
Nature
376
,
765
768
(
1995
).
12.
S.
Kondo
and
T.
Miura
, “
Reaction-diffusion model as a framework for understanding biological pattern formation
,”
Science
329
,
1616
1620
(
2010
).
13.
D.
Bullara
and
Y.
De Decker
, “
Pigment cell movement is not required for generation of Turing patterns in zebrafish skin
,”
Nat. Commun.
6
,
6971
(
2015
).
14.
C.
Konow
,
Z.
Li
,
S.
Shepherd
,
D.
Bullara
, and
I. R.
Epstein
, “
Influence of survival, promotion, and growth on pattern formation in zebrafish skin
,”
Sci. Rep.
11
,
9864
(
2021
).
15.
Y.
Guo
,
M.
Sun
,
A.
Garfinkel
, and
X.
Zhao
, “
Mechanisms of side branching and tip splitting in a model of branching morphogenesis
,”
PLoS One
9
,
e102718
(
2014
).
16.
J.
Lefèvre
and
J. F.
Mangin
, “
A reaction-diffusion model of human brain development
,”
PLoS Comput. Biol.
6
,
e1000749
(
2010
).
17.
R. T.
Liu
,
S. S.
Liaw
, and
P. K.
Maini
, “
Two-stage Turing model for generating pigment patterns on the leopard and the jaguar
,”
Phys. Rev. E
74
,
011914
(
2006
).
18.
J. D.
Murray
, “
How the leopard gets its spots
,”
Sci. Am.
258
,
80
87
(
1988
).
19.
A. J.
Koch
and
H.
Meinhardt
, “
Biological pattern formation: From basic mechanisms to complex structures
,”
Rev. Mod. Phys.
66
,
1481
1507
(
1994
).
20.
G.
Theraulaz
,
E.
Bonabeau
, and
J.-L.
Deneubourg
, “
The origin of nest complexity in social insects
,”
Complexity
3
,
15
25
(
1998
).
21.
G.
Theraulaz
,
E.
Bonabeau
,
S. C.
Nicolis
,
R. V.
Solé
,
V.
Fourcassié
,
S.
Blanco
,
R.
Fournier
,
J. L.
Joly
,
P.
Fernández
,
A.
Grimal
,
P.
Dalle
, and
J. L.
Deneubourg
, “
Spatial patterns in ant colonies
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
9645
9649
(
2002
).
22.
G.
Theraulaz
,
J.
Gautrais
,
S.
Camazine
, and
J. L.
Deneubourg
, “
The formation of spatial patterns in social insects: From simple behaviours to complex structures
,”
Philos. Trans. Royal Soc. A
361
,
1263
1282
(
2003
).
23.
E.
Meron
,
E.
Gilad
,
J.
von Hardenberg
,
M.
Shachak
, and
Y.
Zarmi
, “
Vegetation patterns along a rainfall gradient
,”
Chaos, Solitons Fractals
19
,
367
376
(
2004
).
24.
R.
Hille Ris Lambers
,
M.
Rietkerk
,
F. V. D.
Bosch
,
H. H. T.
Prins
, and
H. D.
Kroon
, “
Vegetation pattern formation in semi-arid grazing systems
,”
Ecology
82
,
50
61
(
2001
).
25.
M. B.
Short
,
P. J.
Brantingham
,
A. L.
Bertozzi
, and
G. E.
Titad
, “
Dissipation and displacement of hotspots in reaction-diffusion models of crime
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
3961
3965
(
2010
).
26.
P.
Rinne
and
C.
van der Schoot
, “
Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events
,”
Development
125
,
1477
1485
(
1998
).
27.
R.
Plaza
,
F.
Sanchez-Garduno
,
P.
Padilla
,
R. A.
Barrio
, and
P. K.
Maini
, “
The effect of growth and curvature on pattern formation
,”
J. Dyn. Differ. Equ.
16
,
1093
1121
(
2004
).
28.
A. D.
Economou
,
A.
Ohazama
,
T.
Porntaveetus
,
P. T.
Sharpe
,
S.
Kondo
,
M. A.
Basson
,
A.
Gritli-Linde
,
M. T.
Cobourne
, and
J. B.
Green
, “
Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate
,”
Nat. Genet.
44
,
348
351
(
2012
).
29.
A.
Madzvamuse
,
E. A.
Gaffney
, and
P. K.
Maini
, “
Stability analysis of non-autonomous reaction-diffusion systems: The effects of growing domains
,”
J. Math. Biol.
61
,
133
164
(
2010
).
30.
V.
Klika
and
E. A.
Gaffney
, “
History dependence and the continuum approximation breakdown: The impact of domain growth on Turing’s instability
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
473
,
20160744
(
2017
).
31.
A. A.
Neville
,
P. C.
Matthews
, and
H. M.
Byrne
, “
Interactions between pattern formation and domain growth
,”
Bull. Math. Biol.
68
,
1975
2003
(
2006
).
32.
D. M.
Holloway
and
L. G.
Harrison
, “
Pattern selection in plants: Coupling chemical dynamics to surface growth in three dimensions
,”
Ann. Bot.
101
,
361
374
(
2007
).
33.
R. A.
Barrio
,
C.
Varea
,
J. L.
Aragón
, and
P. K.
Maini
, “
A two-dimensional numerical study of spatial pattern formation in interacting Turing systems
,”
Bull. Math. Biol.
61
,
483
505
(
1999
).
34.
D. G.
Míguez
,
M.
Dolnik
,
A. P.
Muñuzuri
, and
L.
Kramer
, “
Effect of axial growth on Turing pattern formation
,”
Phys. Rev. Lett.
96
,
048304
(
2006
).
35.
C.
Konow
,
N. H.
Somberg
,
J.
Chavez
,
I. R.
Epstein
, and
M.
Dolnik
, “
Turing patterns on radially growing domains: Experiments and simulations
,”
Phys. Chem. Chem. Phys.
21
,
6718
6724
(
2019
).
36.
N. H.
Somberg
,
C.
Konow
,
I. R.
Epstein
, and
M.
Dolnik
, “Growth mode selection of radially growing Turing patterns,” in Proceedings of the COMSOL Users Conference Boston (Brandeis University, 2019); available at https://www.comsol.com/paper/growth-mode-selection-of-radially-growing-turing-patterns-81501.
37.
A.
Madzvamuse
and
P. K.
Maini
, “
Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains
,”
J. Comput. Phys.
225
,
100
119
(
2007
).
38.
J.
Shen
,
C.
Dahmann
, and
G. O.
Pflugfelder
, “
Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting
,”
BMC Dev. Biol.
10
,
23
(
2010
).
39.
M. A.
Miller
, “
Patterning with diffusion barriers
,”
Dev. Cell
35
,
395
396
(
2015
).
40.
K.
Page
,
P. K.
Maini
, and
N. A.
Monk
, “
Pattern formation in spatially heterogeneous Turing reaction-diffusion models
,”
Physica D
181
,
80
101
(
2003
).
41.
M.
Bengfort
,
H.
Malchow
, and
F. M.
Hilker
, “
The Fokker–Planck law of diffusion and pattern formation in heterogeneous environments
,”
J. Math. Biol.
73
,
683
704
(
2016
).
42.
M. J.
Simpson
,
K. A.
Landman
, and
D. F.
Newgreen
, “
Chemotactic and diffusive migration on a nonuniformly growing domain: Numerical algorithm development and applications
,”
J. Comput. Appl. Math.
192
,
282
300
(
2006
).
43.
E. J.
Crampin
,
W. W.
Hackborn
, and
P. K.
Maini
, “
Pattern formation in reaction-diffusion models with nonuniform domain growth
,”
Bull. Math. Biol.
64
,
747
769
(
2002
).
44.
I.
Lengyel
,
G.
Rábai
, and
I. R.
Epstein
, “
Experimental and modelling study of oscillations in the chlorine dioxide-iodine-malonic acid reaction
,”
J. Am. Chem. Soc.
112
,
9104
9110
(
1990
).
45.
I.
Lengyel
and
I. R.
Epstein
, “
Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system
,”
Science
251
,
650
652
(
1991
).
46.
V.
Castets
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
, “
Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern
,”
Phys. Rev. Lett.
64
,
2953
2956
(
1990
).
47.
I.
Lengyel
and
I. R.
Epstein
, “
A chemical approach to designing Turing patterns in reaction-diffusion systems
,”
Proc. Natl. Acad. Sci. U.S.A.
89
,
3977
3979
(
1992
).
48.
P.
Ball
, “
Forging patterns and making waves from biology to geology: A commentary on Turing (1952) ‘The chemical basis of morphogenesis’
,”
Philos. Trans. R. Soc. B: Biol. Sci.
370
,
20140218
(
2015
).
49.
M.
Dolnik
,
T.
Bánsági
, Jr.
,
S.
Ansari
,
I.
Valent
, and
I. R.
Epstein
, “
Locking of Turing patterns in the chlorine dioxide–iodine–malonic acid reaction with one-dimensional spatial periodic forcing
,”
Phys. Chem. Chem. Phys.
13
,
12578
(
2011
).
50.
D.
Feldman
,
R.
Nagao
,
T.
Bánsági
, Jr.
,
I. R.
Epstein
, and
M.
Dolnik
, “
Turing patterns in the chlorine dioxide–iodine–malonic acid reaction with square spatial periodic forcing
,”
Phys. Chem. Chem. Phys.
14
,
6577
(
2012
).
51.
D. K.
Gaskins
,
E. E.
Pruc
,
I. R.
Epstein
, and
M.
Dolnik
, “
Multifold increases in Turing pattern wavelength in the chlorine dioxide-iodine-malonic acid reaction-diffusion system
,”
Phys. Rev. Lett.
117
,
056001
(
2016
).
52.
T.
Hiscock
and
S.
Megason
, “
Orientation of Turing-like patterns by morphogen gradients and tissue anisotropies
,”
Cell Syst.
1
,
408
416
(
2015
).
53.
T.
Bansagi
, Jr.
,
V. K.
Vanag
, and
I. R.
Epstein
, “
Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns
,”
Science
331
,
1309
1312
(
2011
).

Supplementary Material

You do not currently have access to this content.