A simple topological model describing the chaotic dynamics of two coupled neurons is established and analyzed based on the Smale horseshoe theory.

1.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its applications to conduction and excitation in nerve
,”
J. Physiol. (Lond.)
116
,
500
544
(
1952
).
2.
W.
Gerstner
,
W. M.
Kistler
,
R.
Naud
, and
L.
Paninski
,
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
(
Cambridge University Press
,
Cambridge
,
2014
).
3.
M.
di Bernardo
,
C. J.
Budd
,
A. R.
Champneys
,
P.
Kowalczyk
,
A. B.
Nordmark
,
G. O.
Tost
, and
P. T.
Piiroinen
, “
Bifurcations in nonsmooth dynamical systems
,”
SIAM Rev.
50
,
629
701
(
2008
).
4.
D.
Simpson
, “
Border-collision bifurcations in Rn
,”
SIAM Rev.
58
(
2
),
177
226
(
2016
).
5.
S.
Adly
,
A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics
(
Springer
,
Berlin
,
2017
).
6.
F.
Angulo
,
C.
Ocampo
,
G.
Olivar
, and
R.
Ramos
, “
Nonlinear and nonsmooth dynamics in a DC-DC buck converter: Two experimental set-ups
,”
Nonlinear Dyn.
46
,
239
257
(
2006
).
7.
S.
Banerjee
,
M. S.
Karthik
,
G.
Yuan
, and
J. A.
Yorke
, “
Bifurcations in one-dimensional piecewise smooth maps–theory and applications in switching circuits
,”
IEEE Trans. Circuits Syst. I
47
,
389
394
(
2000
).
8.
M.
Dutta
,
H. E.
Nusse
,
E.
Ott
,
J. A.
Yorke
, and
G.
Yuan
, “
Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems
,”
Phys. Rev. Lett.
83
,
4281
4284
(
1999
).
9.
G.
Li
,
Y.
Yue
,
J.
Xie
, and
C.
Grebogi
, “
Strange nonchaotic attractors in a nonsmooth dynamical system
,”
Commun. Nonlinear Sci. Numer. Simul.
78
,
104858
(
2019
).
10.
D.
Simpson
, “
Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form
,”
Int. J. Bifurcation Chaos
24
,
1430018
(
2014
).
11.
D.
Weiss
,
T.
Kpper
, and
H. A.
Hosham
, “
Invariant manifolds for nonsmooth systems
,”
Physica D
241
(
22
),
1895
1902
(
2012
).
12.
H.
Jiang
,
L.
Zhang
,
Z.
Chen
, and
Q.
Bi
, “
Non-smooth bifurcation analysis of Chen system via impulsive force
,”
Acta. Phys. Sin.
61
(
8
),
82
89
(
2012
).
13.
The Handbook of Brain Theory and Neural Networks, 2nd ed., edited by M. A. Arbib (The MIT Press, Cambridge, 2003).
14.
J.
Guckenheimer
and
R. A.
Oliva
, “
Chaos in the Hodgkin-Huxley model
,”
SIAM J. Appl. Dyn. Syst.
1
,
105
114
(
2002
).
15.
J. J. B.
Biemond
,
A. P. S.
de Moura
,
C.
Grebogi
,
N.
van de Wouw
, and
H.
Nijmeijer
, “Dynamical collapse of trajectories, part II: Limit set of a horseshoe-like map,” in Proceedings of the 8th European Nonlinear Dynamics Conference (ENOC 2014) (Vienna University of Technology, Vienna, 2014).
16.
L. M.
Lerman
and
L. P.
Shil’nikov
, “
Homoclinical structures in nonautonomous systems: Nonautonomous chaos
,”
Chaos
2
,
447
454
(
1992
).
17.
C.
Robinson
,
Dynamical Systems: Stability, Symbolic Dynamics and Chaos
(
CRC Press
,
Florida
,
1999
).
18.
B.
Schmalfuss
, “
Attractors for nonautonomous and random dynamical systems perturbed by impulses
,”
Discret. Contin. Dyn. Syst.
9
,
727
744
(
2003
).
19.
D. N.
Cheban
,
P. E.
Kloeden
, and
B.
Schmalfuss
, “
The relationship between pullback, forward and global attractors of nonautonomous dynamical systems
,”
Nonlinear Dyn. Syst. Theor.
2
,
125
144
(
2002
).
20.
V. V.
Chepyzhov
, “
Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics
,”
Russ. Math. Surv.
68
,
159
196
(
2013
).
21.
X.
Zhang
, “
Regular nonchaotic attractors with positive plural
,”
Int. J. Bifurcation Chaos
26
,
1650241
(
2016
).
22.
W.
McCulloch
, and
W.
Pitts
, “
A logical calculus of the ideas immanent in nervous activity
,”
Bull. Math. Biophys.
5
,
115
133
(
1943
).
23.
J. J.
Hopfield
, “
Neurons with graded response have collective computational properties like those of two-state neurons
,”
Proc. Natl. Acad. Sci. U.S.A.
81
,
3088
3092
(
1984
).
24.
J. J.
Hopfield
and
D. W.
Tank
, “
Neural computation of decisions optimization problems
,”
Biol. Cybernet
52
,
141
152
(
1985
).
25.
I. E.
Lagaris
,
A.
Likas
, and
D. I.
Fotiadis
, “
Artificial neural networks for solving ordinary and partial differential equations
,”
IEEE Trans. Neural Netw.
9
,
987
1000
(
1998
).
26.
W.
Liu
,
Z.
Wang
,
X.
Liu
,
N.
Zeng
,
Y.
Liu
, and
F. E.
Alsaadi
, “
A survey of deep neural network architectures and their applications
,”
Neurocomputing
234
,
11
26
(
2017
).
27.
R.
Rojas
,
Neural Networks: A Systematic Introduction
(
Springer
,
Berlin
,
1996
).
28.
J.
Schmidhuber
, “
Deep learning in neural networks: An overview
,”
Neural Netw.
61
,
85
117
(
2015
).
29.
T. P.
Vogels
,
K.
Rajan
, and
L. F.
Abbott
, “
Neural network dynamics
,”
Annu. Rev. Neurosci.
28
,
357
376
(
2005
).
30.
Brain Dynamics: Progress and Perspectives, Springer Series in Brain Dynamics, edited by E. Başar and T. H. Bullock (Springer, Berlin, 1989).
31.
H.
Korn
and
P.
Faure
, “
Is there chaos in the brain? II. Experimental evidence and related models
,”
C. R. Biologies
326
,
787
840
(
2003
).
32.
S. J.
Schiff
,
K.
Jerger
,
D. H.
Duong
,
T.
Chang
,
M. L.
Spano
, and
W. L.
Ditto
, “
Controlling chaos in the brain
,”
Nature
370
,
615
620
(
1994
).
33.
H.
Preissl
,
W.
Lutzenberger
, and
F.
Pulvermüller
, “
Is there chaos in the brain?
,”
Behav. Brain Sci.
19
,
307
308
(
1996
).
34.
Emergent Neural Computational Architectures Based on Neuroscience: Towards Neuroscience-Inspired Computing, edited by S. Wermter, J. Austin, and D. Willshaw (Springer-Verlag, Berlin, 2001).
35.
J. J.
Wright
and
D. T. J.
Liley
, “
Dynamics of the brain at global and microscopic scales: Neural networks and the EEG
,”
Behav. Brain Sci.
19
,
285
320
(
1996
).
36.
K.
Aihara
,
T.
Takabe
, and
M.
Toyoda
, “
Chaotic neural networks
,”
Phys. Lett. A
144
,
333
340
(
1990
).
37.
P.
Dirac
,
The Principles of Quantum Mechanics
(
Oxford Press
,
Oxford
,
1958
).
38.
G. B.
Arfken
and
H. J.
Weber
,
Mathematical Methods for Physicists
(
Academic Press
,
Boston
,
2000
).
39.
I. M.
Gel’fand
and
G. E.
Shilov
,
Generalized Functions, 1–5
(
Academic Press
,
Boston
,
1966–1968
).
40.
L.
Schwartz
,
Théorie des Distribution 1
(
Hermann
,
1950
).
41.
B. P.
Kitchens
,
Symbolic Dynamics, One-sided, Two-sided and Countable State Markov Shifts
(
Springer-Verlag
,
New York
,
1998
).
42.
F.
Blanchard
,
E.
Glasner
,
S.
Kolyada
, and
A.
Maass
, “
On Li-Yorke pairs
,”
J. Reine Angew. Math.
547
,
51
68
(
2002
).
43.
A. N.
Churilov
,
A.
Medvedev
, and
Z. T.
Zhusubaliyev
, “
Impulsive Goodwin oscillator with large delay: Periodic oscillations, bistability, and attractors
,”
Nonlin. Anal. Hybrid Syst.
21
,
171
183
(
2016
).
44.
A. F.
Filippov
,
Differential Equations with Discontinuous Right-hand Sides
(
Kluwer
,
Dordrecht
,
1988
).
45.
P.
Kowalczyk
,
M.
di Bernardo
,
A. R.
Champneys
,
S. J.
Hogan
,
M.
Homer
,
Y. A.
Kuznetsov
,
A.
Nordmark
, and
P. T.
Piiroinen
, “
Two-parameter non-smooth bifurcations of limit cycles: Classification and open problems
,”
Int. J. Bifurcation Chaos
16
,
601
629
(
2006
).
46.
A. P.
Kuznetsov
,
L. V.
Turukina
, and
E.
Mosekilde
, “
Dynamical systems of different classes as models of the kicked nonlinear oscillator
,”
Int. J. Bifurcation Chaos
11
,
1065
1077
(
2001
).
47.
X.
Zhang
and
G.
Chen
, “
A geometric criterion for the existence of chaos based on periodic orbits in continuous-time autonomous systems
,”
J. Dyn. Contr. Syst.
(published online
2022
).
48.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer-Verlag
,
New York
,
1990
).
You do not currently have access to this content.