A simple topological model describing the chaotic dynamics of two coupled neurons is established and analyzed based on the Smale horseshoe theory.
REFERENCES
1.
A. L.
Hodgkin
and A. F.
Huxley
, “A quantitative description of membrane current and its applications to conduction and excitation in nerve
,” J. Physiol. (Lond.)
116
, 500
–544
(1952
). 2.
W.
Gerstner
, W. M.
Kistler
, R.
Naud
, and L.
Paninski
, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
(Cambridge University Press
, Cambridge
, 2014
).3.
M.
di Bernardo
, C. J.
Budd
, A. R.
Champneys
, P.
Kowalczyk
, A. B.
Nordmark
, G. O.
Tost
, and P. T.
Piiroinen
, “Bifurcations in nonsmooth dynamical systems
,” SIAM Rev.
50
, 629
–701
(2008
). 4.
D.
Simpson
, “Border-collision bifurcations in
,” SIAM Rev.
58
(2
), 177
–226
(2016
). 5.
S.
Adly
, A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics
(Springer
, Berlin
, 2017
).6.
F.
Angulo
, C.
Ocampo
, G.
Olivar
, and R.
Ramos
, “Nonlinear and nonsmooth dynamics in a DC-DC buck converter: Two experimental set-ups
,” Nonlinear Dyn.
46
, 239
–257
(2006
). 7.
S.
Banerjee
, M. S.
Karthik
, G.
Yuan
, and J. A.
Yorke
, “Bifurcations in one-dimensional piecewise smooth maps–theory and applications in switching circuits
,” IEEE Trans. Circuits Syst. I
47
, 389
–394
(2000
). 8.
M.
Dutta
, H. E.
Nusse
, E.
Ott
, J. A.
Yorke
, and G.
Yuan
, “Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems
,” Phys. Rev. Lett.
83
, 4281
–4284
(1999
). 9.
G.
Li
, Y.
Yue
, J.
Xie
, and C.
Grebogi
, “Strange nonchaotic attractors in a nonsmooth dynamical system
,” Commun. Nonlinear Sci. Numer. Simul.
78
, 104858
(2019
). 10.
D.
Simpson
, “Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form
,” Int. J. Bifurcation Chaos
24
, 1430018
(2014
). 11.
D.
Weiss
, T.
Kpper
, and H. A.
Hosham
, “Invariant manifolds for nonsmooth systems
,” Physica D
241
(22
), 1895
–1902
(2012
). 12.
H.
Jiang
, L.
Zhang
, Z.
Chen
, and Q.
Bi
, “Non-smooth bifurcation analysis of Chen system via impulsive force
,” Acta. Phys. Sin.
61
(8
), 82
–89
(2012
). 13.
The Handbook of Brain Theory and Neural Networks, 2nd ed., edited by M. A. Arbib (The MIT Press, Cambridge, 2003).
14.
J.
Guckenheimer
and R. A.
Oliva
, “Chaos in the Hodgkin-Huxley model
,” SIAM J. Appl. Dyn. Syst.
1
, 105
–114
(2002
). 15.
J. J. B.
Biemond
, A. P. S.
de Moura
, C.
Grebogi
, N.
van de Wouw
, and H.
Nijmeijer
, “Dynamical collapse of trajectories, part II: Limit set of a horseshoe-like map,” in Proceedings of the 8th European Nonlinear Dynamics Conference (ENOC 2014) (Vienna University of Technology, Vienna, 2014).16.
L. M.
Lerman
and L. P.
Shil’nikov
, “Homoclinical structures in nonautonomous systems: Nonautonomous chaos
,” Chaos
2
, 447
–454
(1992
). 17.
C.
Robinson
, Dynamical Systems: Stability, Symbolic Dynamics and Chaos
(CRC Press
, Florida
, 1999
).18.
B.
Schmalfuss
, “Attractors for nonautonomous and random dynamical systems perturbed by impulses
,” Discret. Contin. Dyn. Syst.
9
, 727
–744
(2003
). 19.
D. N.
Cheban
, P. E.
Kloeden
, and B.
Schmalfuss
, “The relationship between pullback, forward and global attractors of nonautonomous dynamical systems
,” Nonlinear Dyn. Syst. Theor.
2
, 125
–144
(2002
). 20.
V. V.
Chepyzhov
, “Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics
,” Russ. Math. Surv.
68
, 159
–196
(2013
). 21.
X.
Zhang
, “Regular nonchaotic attractors with positive plural
,” Int. J. Bifurcation Chaos
26
, 1650241
(2016
). 22.
W.
McCulloch
, and W.
Pitts
, “A logical calculus of the ideas immanent in nervous activity
,” Bull. Math. Biophys.
5
, 115
–133
(1943
). 23.
J. J.
Hopfield
, “Neurons with graded response have collective computational properties like those of two-state neurons
,” Proc. Natl. Acad. Sci. U.S.A.
81
, 3088
–3092
(1984
). 24.
J. J.
Hopfield
and D. W.
Tank
, “Neural computation of decisions optimization problems
,” Biol. Cybernet
52
, 141
–152
(1985
). 25.
I. E.
Lagaris
, A.
Likas
, and D. I.
Fotiadis
, “Artificial neural networks for solving ordinary and partial differential equations
,” IEEE Trans. Neural Netw.
9
, 987
–1000
(1998
). 26.
W.
Liu
, Z.
Wang
, X.
Liu
, N.
Zeng
, Y.
Liu
, and F. E.
Alsaadi
, “A survey of deep neural network architectures and their applications
,” Neurocomputing
234
, 11
–26
(2017
). 27.
R.
Rojas
, Neural Networks: A Systematic Introduction
(Springer
, Berlin
, 1996
).28.
J.
Schmidhuber
, “Deep learning in neural networks: An overview
,” Neural Netw.
61
, 85
–117
(2015
). 29.
T. P.
Vogels
, K.
Rajan
, and L. F.
Abbott
, “Neural network dynamics
,” Annu. Rev. Neurosci.
28
, 357
–376
(2005
). 30.
Brain Dynamics: Progress and Perspectives, Springer Series in Brain Dynamics, edited by E. Başar and T. H. Bullock (Springer, Berlin, 1989).
31.
H.
Korn
and P.
Faure
, “Is there chaos in the brain? II. Experimental evidence and related models
,” C. R. Biologies
326
, 787
–840
(2003
). 32.
S. J.
Schiff
, K.
Jerger
, D. H.
Duong
, T.
Chang
, M. L.
Spano
, and W. L.
Ditto
, “Controlling chaos in the brain
,” Nature
370
, 615
–620
(1994
). 33.
H.
Preissl
, W.
Lutzenberger
, and F.
Pulvermüller
, “Is there chaos in the brain?
,” Behav. Brain Sci.
19
, 307
–308
(1996
). 34.
Emergent Neural Computational Architectures Based on Neuroscience: Towards Neuroscience-Inspired Computing, edited by S. Wermter, J. Austin, and D. Willshaw (Springer-Verlag, Berlin, 2001).
35.
J. J.
Wright
and D. T. J.
Liley
, “Dynamics of the brain at global and microscopic scales: Neural networks and the EEG
,” Behav. Brain Sci.
19
, 285
–320
(1996
). 36.
K.
Aihara
, T.
Takabe
, and M.
Toyoda
, “Chaotic neural networks
,” Phys. Lett. A
144
, 333
–340
(1990
). 37.
P.
Dirac
, The Principles of Quantum Mechanics
(Oxford Press
, Oxford
, 1958
).38.
G. B.
Arfken
and H. J.
Weber
, Mathematical Methods for Physicists
(Academic Press
, Boston
, 2000
).39.
I. M.
Gel’fand
and G. E.
Shilov
, Generalized Functions, 1–5
(Academic Press
, Boston
, 1966–1968
).40.
41.
B. P.
Kitchens
, Symbolic Dynamics, One-sided, Two-sided and Countable State Markov Shifts
(Springer-Verlag
, New York
, 1998
).42.
F.
Blanchard
, E.
Glasner
, S.
Kolyada
, and A.
Maass
, “On Li-Yorke pairs
,” J. Reine Angew. Math.
547
, 51
–68
(2002
). 43.
A. N.
Churilov
, A.
Medvedev
, and Z. T.
Zhusubaliyev
, “Impulsive Goodwin oscillator with large delay: Periodic oscillations, bistability, and attractors
,” Nonlin. Anal. Hybrid Syst.
21
, 171
–183
(2016
). 44.
A. F.
Filippov
, Differential Equations with Discontinuous Right-hand Sides
(Kluwer
, Dordrecht
, 1988
).45.
P.
Kowalczyk
, M.
di Bernardo
, A. R.
Champneys
, S. J.
Hogan
, M.
Homer
, Y. A.
Kuznetsov
, A.
Nordmark
, and P. T.
Piiroinen
, “Two-parameter non-smooth bifurcations of limit cycles: Classification and open problems
,” Int. J. Bifurcation Chaos
16
, 601
–629
(2006
). 46.
A. P.
Kuznetsov
, L. V.
Turukina
, and E.
Mosekilde
, “Dynamical systems of different classes as models of the kicked nonlinear oscillator
,” Int. J. Bifurcation Chaos
11
, 1065
–1077
(2001
). 47.
X.
Zhang
and G.
Chen
, “A geometric criterion for the existence of chaos based on periodic orbits in continuous-time autonomous systems
,” J. Dyn. Contr. Syst.
(published online 2022
). 48.
S.
Wiggins
, Introduction to Applied Nonlinear Dynamical Systems and Chaos
(Springer-Verlag
, New York
, 1990
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.