The Melnikov method is extended to a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation when an unperturbed system is a piecewise Hamiltonian system with a homoclinic orbit. The homoclinic orbit continuously crosses the first switching manifold and transversally jumps across the second switching manifold by the impulsive effect. The trajectory of the corresponding perturbed system crosses the first switching manifold by applying the reset map describing the impact rule instantaneously. Then, the random Melnikov process of such systems is derived and the criteria for the onset of chaos with or without noise excitation are established. In addition, the complicated dynamics of concrete piecewise-smooth systems with or without noise excitation under the reset maps, impulsive effect, and non-autonomous periodic and damping perturbations are investigated by this extended method and numerical simulations.

1.
B.
Brogliato
,
Nonsmooth Mechanics
(
Springer
,
London
,
1999
).
2.
M.
Wiercigroch
and
E.
Pavlovskaia
,
Engineering Applications of Non-Smooth Dynamics
(
Springer
,
Dordrecht
,
2012
).
3.
M. C.
Mackey
and
L.
Glass
, “
Oscillation and chaos in physiological control systems
,”
Science
197
,
287
289
(
1977
).
4.
Y.
Nesterov
, “
Excessive gap technique in nonsmooth convex minimization
,”
SIAM J. Optim.
16
,
235
249
(
2005
).
5.
T.
Kobori
,
M.
Takahashi
,
T.
Nasu
,
N.
Niwa
, and
K.
Ogasawara
, “
Seismic response controlled structure with active variable stiffness system
,”
Earthq. Eng. Struct. Dyn.
22
,
925
941
(
1993
).
6.
S.
Banerjee
and
G.
Verghese
,
Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos and Nonlinear Control
(
Wiley
,
New York
,
2001
).
7.
V. K.
Melnikov
, “
On the stability of the center for time periodic perturbations
,”
Trans. Moscow Math. Soc.
12
,
1
57
(
1963
).
8.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
(
Springer
,
New York
,
1997
).
9.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer
,
New York
,
2000
).
10.
L. Q.
Zhou
and
F. Q.
Chen
, “
Chaos and subharmonic bifurcations of a soft Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation
,”
Chaos
31
,
113133
(
2021
).
11.
J. C.
Niu
,
R. Y.
Liu
,
Y. J.
Shen
, and
S. P.
Yang
, “
Chaos detection of Duffing system with fractional-order derivative by Melnikov method
,”
Chaos
29
,
123106
(
2019
).
12.
Y.
Wang
,
F. M.
Li
, and
Y. Z.
Wang
, “
Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method
,”
Chaos
25
,
063108
(
2015
).
13.
M.
Kunze
,
Non-Smooth Dynamical Systems
(
Springer
,
Berlin
,
2000
).
14.
L.
Shi
,
Y.
Zou
, and
T.
Küpper
, “
Melnikov method and detection of chaos for non-smooth systems
,”
Acta Math. Appl. Sin. Engl. Ser.
29
,
881
896
(
2013
).
15.
P.
Kukučka
, “
Melnikov method for discontinuous planar systems
,”
Nonlinear Anal. Theory Methods Appl.
66
,
2698
2719
(
2007
).
16.
Q. J.
Cao
,
M.
Wiercigroch
,
E. E.
Pavlovskaia
,
J. M. T.
Thompson
, and
C.
Grebogi
, “
Archetypal oscillator for smooth and discontinuous dynamics
,”
Phys. Rev. E
74
,
046218
(
2006
).
17.
Q. J.
Cao
,
M.
Wiercigroch
,
E. E.
Pavlovskaia
,
J. M. T.
Thompson
, and
C.
Grebogi
, “
Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics
,”
Philos. Trans. R. Soc. A
366
,
635
652
(
2008
).
18.
F.
Battelli
and
M.
Fečkan
, “
Homoclinic trajectories in discontinuous systems
,”
J. Dyn. Differ. Equ.
20
,
337
376
(
2008
).
19.
F.
Battelli
and
M.
Fečkan
, “
On the chaotic behaviour of discontinuous systems
,”
J. Dyn. Differ. Equ.
23
,
495
540
(
2011
).
20.
F.
Battelli
and
M.
Fečkan
, “
Bifurcation and chaos near sliding homoclinics
,”
J. Differ. Equ.
248
,
2227
2262
(
2010
).
21.
F.
Battelli
and
M.
Fečkan
, “
Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems
,”
Physica D
241
,
1962
1975
(
2012
).
22.
S. B.
Li
,
W.
Zhang
, and
Y. X.
Hao
, “
Melnikov-type method for a class of discontinuous planar systems and applications
,”
Int. J. Bifurcation Chaos
24
,
1450022
(
2014
).
23.
A.
Granados
,
S. J.
Hogan
, and
T. M.
Seara
, “
The Melnikov method and subharmonic orbits in a piecewise-smooth system
,”
SIAM J. Appl. Dyn. Syst.
11
,
801
830
(
2012
).
24.
S. B.
Li
,
W. S.
Ma
,
W.
Zhang
, and
Y. X.
Hao
, “
Melnikov method for a class of planar hybrid piecewise-smooth systems
,”
Int. J. Bifurcation Chaos
26
,
1650030
(
2016
).
25.
S. B.
Li
,
C.
Shen
,
W.
Zhang
, and
Y. X.
Hao
, “
The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application
,”
Nonlinear Dyn.
85
,
1091
1104
(
2016
).
26.
S. B.
Li
,
H. L.
Wu
,
X. X.
Zhou
,
T. T.
Wang
, and
W.
Zhang
, “
Theoretical and experimental studies of global dynamics for a class of bistable nonlinear impact oscillators with bilateral rigid constraints
,”
Int. J. Non-Linear Mech.
133
,
103720
(
2021
).
27.
S. B.
Li
,
H. L.
Wu
, and
J. N.
Chen
, “
Global dynamics and performance of vibration reduction for a new vibro-impact bistable nonlinear energy sink
,”
Int. J. Non-Linear Mech.
139
,
103891
(
2022
).
28.
R. L.
Tian
,
Y. F.
Zhou
,
B. L.
Zhang
, and
X. W.
Yang
, “
Chaotic threshold for a class of impulsive differential system
,”
Nonlinear Dyn.
83
,
2229
2240
(
2016
).
29.
R. L.
Tian
,
Y. F.
Zhou
,
Y. Z.
Wang
,
W. J.
Feng
, and
X. W.
Yang
, “
Chaotic threshold for non-smooth system with multiple impulse effect
,”
Nonlinear Dyn.
85
,
1849
1863
(
2016
).
30.
S. B.
Li
,
T. T.
Wang
, and
X. L.
Bian
, “
Global dynamics for a class of new bistable nonlinear oscillators with bilateral elastic collisions
,”
Int. J. Dyn. Control
9
,
885
900
(
2021
).
31.
H.
Zheng
and
Y. H.
Xia
, “
Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function
,”
Discrete Contin. Dyn. Syst. Ser. B
(published online 2022).
32.
A. R.
Bulsara
,
W. C.
Schieve
, and
E. W.
Jacobs
, “
Homoclinic chaos in systems perturbed by weak Langevin noise
,”
Phys. Rev. A
41
,
668
681
(
1990
).
33.
M.
Frey
and
E.
Simiu
, “
Noise-induced chaos and phase space flux
,”
Physica D
63
,
321
340
(
1993
).
34.
H.
Lin
and
S. C. S.
Yim
, “
Analysis of a nonlinear system exhibiting chaotic, noisy chaotic, and random behaviors
,”
J. Appl. Mech.
63
,
509
516
(
1996
).
35.
Y. M.
Lei
,
R.
Fu
,
Y.
Yang
, and
Y.
Wang
, “
Dichotomous-noise-induced chaos in a generalized Duffing-type oscillator with fractional-order deflection
,”
J. Sound Vib.
363
,
68
76
(
2016
).
36.
Y. M.
Lei
,
F.
Zhang
, and
X. Z.
Shao
, “
Chaos and chaos control of the Frenkel–Kontorova model with dichotomous noise
,”
Int. J. Bifurcation Chaos
27
,
1750052
(
2017
).
37.
D.
Liu
,
W.
Xu
, and
Y.
Xu
, “
Noise-induced chaos in the elastic forced oscillators with real-power damping force
,”
Nonlinear Dyn.
71
,
457
467
(
2013
).
38.
E. L.
Chen
,
W. C.
Xing
,
M. Q.
Wang
,
W. L.
Ma
, and
Y. J.
Chang
, “
Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation
,”
Chaos Soliton. Fract.
152
,
111300
(
2021
).
39.
D.
Liu
,
Y.
Xu
, and
J. L.
Li
, “
Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energy harvester system with fractional-order physical properties
,”
J. Sound Vib.
399
,
182
196
(
2017
).
40.
Y. M.
Lei
and
F.
Zheng
, “
Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions
,”
Chaos
26
,
123111
(
2016
).
41.
D.
Liu
and
Y.
Xu
, “
Random disordered periodical input induced chaos in discontinuous systems
,”
Int. J. Bifurcation Chaos
29
,
1950002
(
2019
).
42.
E.
Simiu
, “
A unified theory of deterministic and noise-induced transitions: Melnikov processes and their application in engineering, physics and neuroscience
,”
AIP Conf. Proc.
502
,
266
271
(
1999
).
43.
X. L.
Yang
,
Y.
Xu
, and
Z. K.
Sun
, “
Effect of Gaussian white noise on the dynamical behaviors of an extended Duffing-van der Pol oscillator
,”
Int. J. Bifurcation Chaos
16
,
2587
2600
(
2006
).
44.
W.
Xu
,
J. Q.
Feng
, and
H. W.
Rong
, “
Melnikov’s method for a general nonlinear vibro-impact oscillator
,”
Nonlinear Anal.
71
,
418
426
(
2009
).
45.
R. L.
Tian
,
Y. F.
Zhou
,
Q. B.
Wang
, and
L. L.
Zhang
, “
Bifurcation and chaotic threshold of Duffing system with jump discontinuities
,”
Eur. Phys. J. Plus
131
,
15
25
(
2016
).
46.
G. A.
Gottwald
and
I.
Melbourne
, “
A new test for chaos in deterministic systems
,”
Proc. R. Soc. London, Ser. A
460
,
603
611
(
2004
).
47.
K. H.
Sun
,
X.
Liu
, and
C. X.
Zhu
, “
The 0–1 test algorithm for chaos and its applications
,”
Chin. Phys. B
19
,
110510
(
2010
).
48.
L. G.
Yuan
,
Q. G.
Yang
, and
C. B.
Zeng
, “
Chaos detection and parameter identification in fractional-order chaotic systems with delay
,”
Nonlinear Dyn.
73
,
439
448
(
2013
).
49.
J. P.
Yang
and
Z. R.
Liu
, “
A novel simple hyperchaotic system with two coexisting attractors
,”
Int. J. Bifurcation Chaos
29
,
1950203
(
2019
).
You do not currently have access to this content.