What happens when the paradigmatic Kuramoto model involving interacting oscillators of distributed natural frequencies and showing spontaneous collective synchronization in the stationary state is subject to random and repeated interruptions of its dynamics with a reset to the initial condition? While resetting to a synchronized state, it may happen between two successive resets that the system desynchronizes, which depends on the duration of the random time interval between the two resets. Here, we unveil how such a protocol of stochastic resetting dramatically modifies the phase diagram of the bare model, allowing, in particular, for the emergence of a synchronized phase even in parameter regimes for which the bare model does not support such a phase. Our results are based on an exact analysis invoking the celebrated Ott–Antonsen ansatz for the case of the Lorentzian distribution of natural frequencies and numerical results for Gaussian frequency distribution. Our work provides a simple protocol to induce global synchrony in the system through stochastic resetting.

1.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer
,
1984
).
2.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
3.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
(
2005
).
4.
S.
Gupta
,
A.
Campa
, and
S.
Ruffo
, “
Kuramoto model of synchronization: Equilibrium and nonequilibrium aspects
,”
J. Stat. Mech.
R08001
(
2014
) (online).
5.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
6.
S.
Gupta
,
A.
Campa
, and
S.
Ruffo
,
Statistical Physics of Synchronization
(
Springer
,
2018
).
7.
A.
Pikovsky
,
J.
Kurths
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
8.
S.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Penguin
,
2004
).
9.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
10.
E. A.
Martens
,
E.
Barreto
,
S. H.
Strogatz
,
E.
Ott
,
P.
So
, and
T. M.
Antonsen
, “
Exact results for the Kuramoto model with a bimodal frequency distribution
,”
Phys. Rev. E
79
,
026204
(
2009
).
11.
A.
Campa
, “
Phase diagram of noisy systems of coupled oscillators with a bimodal frequency distribution
,”
J. Phys. A: Math. Theor.
53
,
154001
(
2020
).
12.
A.
Einstein
,
Investigations on the Theory of the Brownian Movement
(
Courier Corporation
,
1956
).
13.
S. N.
Majumdar
, “Brownian functionals in physics and computer science,” in The Legacy Of Albert Einstein: A Collection of Essays in Celebration of the Year of Physics (World Scientific, 2007), pp. 93–129.
14.
P.
Mörters
and
Y.
Peres
,
Brownian Motion
(
Cambridge University Press
,
2010
), Vol. 30.
15.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with stochastic resetting
,”
Phys. Rev. Lett.
106
,
160601
(
2011
).
16.
R.
Livi
and
P.
Politi
,
Nonequilibrium Statistical Physics: A Modern Perspective
(
Cambridge University Press
,
2017
).
17.
D.
Mukamel
, “Phase transitions in non-equilibrium systems,” cond-mat/0003424 (2000).
18.
A.
Pal
, “
Diffusion in a potential landscape with stochastic resetting
,”
Phys. Rev. E
91
,
012113
(
2015
).
19.
A.
Nagar
and
S.
Gupta
, “
Diffusion with stochastic resetting at power-law times
,”
Phys. Rev. E
93
,
060102
(
2016
).
20.
S. N.
Majumdar
and
G.
Oshanin
, “
Spectral content of fractional Brownian motion with stochastic reset
,”
J. Phys. A: Math. Theor.
51
,
435001
(
2018
).
21.
F.
Den Hollander
,
S. N.
Majumdar
,
J. M.
Meylahn
, and
H.
Touchette
, “
Properties of additive functionals of Brownian motion with resetting
,”
J. Phys. A: Math. Theor.
52
,
175001
(
2019
).
22.
A.
Chatterjee
,
C.
Christou
, and
A.
Schadschneider
, “
Diffusion with resetting inside a circle
,”
Phys. Rev. E
97
,
062106
(
2018
).
23.
J.
Masoliver
, “
Telegraphic processes with stochastic resetting
,”
Phys. Rev. E
99
,
012121
(
2019
).
24.
S.
Ray
and
S.
Reuveni
, “
Diffusion with resetting in a logarithmic potential
,”
J. Chem. Phys.
152
,
234110
(
2020
).
25.
M.
Montero
and
J.
Villarroel
, “
Directed random walk with random restarts: The Sisyphus random walk
,”
Phys. Rev. E
94
,
032132
(
2016
).
26.
V.
Méndez
and
D.
Campos
, “
Characterization of stationary states in random walks with stochastic resetting
,”
Phys. Rev. E
93
,
022106
(
2016
).
27.
L.
Kusmierz
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
, “
First order transition for the optimal search time of Lévy flights with resetting
,”
Phys. Rev. Lett.
113
,
220602
(
2014
).
28.
S.
Belan
, “
Restart could optimize the probability of success in a Bernoulli trial
,”
Phys. Rev. Lett.
120
,
080601
(
2018
).
29.
F.
Coghi
and
R. J.
Harris
, “
A large deviation perspective on ratio observables in reset processes: Robustness of rate functions
,”
J. Stat. Phys.
179
,
131
154
(
2020
).
30.
V.
Kumar
,
O.
Sadekar
, and
U.
Basu
, “
Active Brownian motion in two dimensions under stochastic resetting
,”
Phys. Rev. E
102
,
052129
(
2020
).
31.
P. C.
Bressloff
, “
Modeling active cellular transport as a directed search process with stochastic resetting and delays
,”
J. Phys. A: Math. Theor.
53
,
355001
(
2020
).
32.
M. R.
Evans
,
S. N.
Majumdar
, and
K.
Mallick
, “
Optimal diffusive search: Nonequilibrium resetting versus equilibrium dynamics
,”
J. Phys. A: Math. Theor.
46
,
185001
(
2013
).
33.
A.
Pal
and
S.
Reuveni
, “
First passage under restart
,”
Phys. Rev. Lett.
118
,
030603
(
2017
).
34.
A.
Falcón-Cortés
,
D.
Boyer
,
L.
Giuggioli
, and
S. N.
Majumdar
, “
Localization transition induced by learning in random searches
,”
Phys. Rev. Lett.
119
,
140603
(
2017
).
35.
A.
Chechkin
and
I.
Sokolov
, “
Random search with resetting: A unified renewal approach
,”
Phys. Rev. Lett.
121
,
050601
(
2018
).
36.
U.
Bhat
,
C.
De Bacco
, and
S.
Redner
, “
Stochastic search with Poisson and deterministic resetting
,”
J. Stat. Mech.
2016
,
083401
(
2016
).
37.
S.
Ahmad
,
I.
Nayak
,
A.
Bansal
,
A.
Nandi
, and
D.
Das
, “
First passage of a particle in a potential under stochastic resetting: A vanishing transition of optimal resetting rate
,”
Phys. Rev. E
99
,
022130
(
2019
).
38.
É.
Roldán
,
A.
Lisica
,
D.
Sánchez-Taltavull
, and
S. W.
Grill
, “
Stochastic resetting in backtrack recovery by RNA polymerases
,”
Phys. Rev. E
93
,
062411
(
2016
).
39.
G.
Tucci
,
A.
Gambassi
,
S.
Gupta
, and
É.
Roldán
, “
Controlling particle currents with evaporation and resetting from an interval
,”
Phys. Rev. Res.
2
,
043138
(
2020
).
40.
S.
Reuveni
, “
Optimal stochastic restart renders fluctuations in first passage times universal
,”
Phys. Rev. Lett.
116
,
170601
(
2016
).
41.
D.
Boyer
and
C.
Solis-Salas
, “
Random walks with preferential relocations to places visited in the past and their application to biology
,”
Phys. Rev. Lett.
112
,
240601
(
2014
).
42.
L.
Giuggioli
,
S.
Gupta
, and
M.
Chase
, “
Comparison of two models of tethered motion
,”
J. Phys. A: Math. Theor.
52
,
075001
(
2019
).
43.
S.
Gupta
,
S. N.
Majumdar
, and
G.
Schehr
, “
Fluctuating interfaces subject to stochastic resetting
,”
Phys. Rev. Lett.
112
,
220601
(
2014
).
44.
S.
Gupta
and
A.
Nagar
, “
Resetting of fluctuating interfaces at power-law times
,”
J. Phys. A: Math. Theor.
49
,
445001
(
2016
).
45.
X.
Durang
,
M.
Henkel
, and
H.
Park
, “
The statistical mechanics of the coagulation–diffusion process with a stochastic reset
,”
J. Phys. A: Math. Theor.
47
,
045002
(
2014
).
46.
M.
Magoni
,
S. N.
Majumdar
, and
G.
Schehr
, “
Ising model with stochastic resetting
,”
Phys. Rev. Res.
2
,
033182
(
2020
).
47.
U.
Basu
,
A.
Kundu
, and
A.
Pal
, “
Symmetric exclusion process under stochastic resetting
,”
Phys. Rev. E
100
,
032136
(
2019
).
48.
S.
Karthika
and
A.
Nagar
, “
Totally asymmetric simple exclusion process with resetting
,”
J. Phys. A: Math. Theor.
53
,
115003
(
2020
).
49.
J.
Fuchs
,
S.
Goldt
, and
U.
Seifert
, “
Stochastic thermodynamics of resetting
,”
Europhys. Lett.
113
,
60009
(
2016
).
50.
B.
Mukherjee
,
K.
Sengupta
, and
S. N.
Majumdar
, “
Quantum dynamics with stochastic reset
,”
Phys. Rev. B
98
,
104309
(
2018
).
51.
M.
Abeles
, Local Circuits: An Electrophysiological Study (Springer-Verlag, Berlin, 1982).
52.
A.
Ray
,
A.
Pal
,
D.
Ghosh
,
S. K.
Dana
, and
C.
Hens
, “
Mitigating long transient time in deterministic systems by resetting
,”
Chaos
31
,
011103
(
2021
).
53.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
54.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
55.
D.
Métivier
and
S.
Gupta
, “
Bifurcations in the time-delayed Kuramoto model of coupled oscillators: Exact results
,”
J. Stat. Phys.
176
,
279
298
(
2019
).
56.
D.
Pazó
and
R.
Gallego
, “
The Winfree model with non-infinitesimal phase-response curve: Ott–Antonsen theory
,”
Chaos
30
,
073139
(
2020
).
57.
T.
Tanaka
, “
Low-dimensional dynamics of phase oscillators driven by Cauchy noise
,”
Phys. Rev. E
102
,
042220
(
2020
).
58.
C.
Xu
,
X.
Wang
, and
P. S.
Skardal
, “
Universal scaling and phase transitions of coupled phase oscillator populations
,”
Phys. Rev. E
102
,
042310
(
2020
).
59.
X.
Dai
,
X.
Li
,
H.
Guo
,
D.
Jia
,
M.
Perc
,
P.
Manshour
,
Z.
Wang
, and
S.
Boccaletti
, “
Discontinuous transitions and rhythmic states in the D-dimensional Kuramoto model induced by a positive feedback with the global order parameter
,”
Phys. Rev. Lett.
125
,
194101
(
2020
).
60.
M.
Lipton
,
R.
Mirollo
, and
S. H.
Strogatz
, “
The Kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry
,”
Chaos
31
,
093113
(
2021
).
61.
V. K.
Chandrasekar
,
M.
Manoranjani
, and
S.
Gupta
, “
The Kuramoto model in presence of additional interactions that break rotational symmetry
,”
Phys. Rev. E
102
,
012206
(
2020
).
62.
R.
Berner
,
S.
Yanchuk
,
Y.
Maistrenko
, and
E.
Schöll
, “
Generalized splay states in phase oscillator networks
,”
Chaos
31
,
073128
(
2021
).
63.
A.
Lucchetti
,
M. H.
Jensen
, and
M. L.
Heltberg
, “
Emergence of chimera states in a neuronal model of delayed oscillators
,”
Phys. Rev. Res.
3
,
033041
(
2021
).
64.
S.
Kumarasamy
,
D.
Dudkowski
,
A.
Prasad
, and
T.
Kapitaniak
, “
Ordered slow and fast dynamics of unsynchronized coupled phase oscillators
,”
Chaos
31
,
081102
(
2021
).
65.
M.
Ciszak
,
S.
Olmi
,
G.
Innocenti
,
A.
Torcini
, and
F.
Marino
, “
Collective canard explosions of globally-coupled rotators with adaptive coupling
,”
Chaos Soliton. Fract.
153
,
111592
(
2021
).
66.
C. R.
Laing
, “
Interpolating between bumps and chimeras
,”
Chaos
31
,
113116
(
2021
).
67.
M.
Manoranjani
,
S.
Gupta
, and
V.
Chandrasekar
, “
The Sakaguchi–Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry
,”
Chaos
31
,
083130
(
2021
).
68.
P.
Clusella
,
B.
Pietras
, and
E.
Montbrió
, “
Kuramoto model for populations of quadratic integrate-and-fire neurons with chemical and electrical coupling
,”
Chaos
32
,
013105
(
2022
).
69.
A.
Pikovsky
et al., “
Hierarchy of exact low-dimensional reductions for populations of coupled oscillators
,”
Phys. Rev. Lett.
128
,
054101
(
2022
).
70.
O.
Omel’chenko
, “
Mathematical framework for breathing chimera states
,”
J. Nonlin. Sci.
32
,
1
34
(
2022
).
71.
C.
Bick
,
M.
Goodfellow
,
C. R.
Laing
, and
E. A.
Martens
, “
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review
,”
J. Math. Neurosci.
10
,
1
43
(
2020
).
72.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Westview Press
,
2014
).
73.
A.
Miron
and
S.
Reuveni
, “
Diffusion with local resetting and exclusion
,”
Phys. Rev. Res.
3
,
L012023
(
2021
).
74.
M. H.
Kalos
and
P. A.
Whitlock
,
Monte Carlo Methods
(
John Wiley & Sons
,
2009
).
You do not currently have access to this content.