The Belousov–Zhabotinsky (BZ) reaction was investigated to elucidate features of oscillations depending on the applied electrical potential, E. A cation-exchange resin bead loaded with the catalyst of the BZ reaction was placed on a platinum plate as a working electrode and then E was applied. We found that global oscillations (GO) and a reduced state coexisted on the bead at a negative value of E and that the source point of GO changed depending on E. The thickness of the reduced state was determined by a yellow colored region which corresponded to the distribution of Br2. The present studies suggest that the distribution of the inhibitor, Br, which is produced from Br2, plays an important role in the existence of the reduced state and GO, and the source point of GO.

1.
R. J.
Field
and
R. M.
Noyes
, “
Explanation of spatial band propagation in the Belousov reaction
,”
Nature
237
,
390
392
(
1972
).
2.
R. J.
Field
,
E.
Koros
, and
R. M.
Noyes
, “
Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system
,”
J. Am. Chem. Soc.
94
,
8649
8664
(
1972
).
3.
A. N.
Zaikin
and
A. M.
Zhabotinsky
, “
Concentration wave propagation in two-dimensional liquid-phase self-oscillating system
,”
Nature
225
,
535
537
(
1970
).
4.
D.
Winston
,
M.
Arora
,
J.
Maselko
,
V.
Gáspár
, and
K.
Showalter
, “
Cross-membrane coupling of chemical spatiotemporal patterns
,”
Nature
351
,
132
135
(
1991
).
5.
H.
Nagahara
,
T.
Ichino
, and
K.
Yoshikawa
, “
Direction detector on an excitable field: Field computation with coincidence detection
,”
Phys. Rev. E
70
,
036221
(
2004
).
6.
J.
Maselko
,
J. S.
Reckley
, and
K.
Showalter
, “
Regular and irregular spatial patterns in an immobilized-catalyst Belousov-Zhabotinskii reaction
,”
J. Phys. Chem.
93
,
2774
2780
(
1989
).
7.
R.
Aihara
and
K.
Yoshikawa
, “
Size-dependent switching of the spatiotemporal structure between a traveling wave and global rhythm
,”
J. Phys. Chem. A.
105
,
8445
8448
(
2001
).
8.
M.
Kuze
,
H.
Kitahata
,
O.
Steinbock
, and
S.
Nakata
, “
Distinguishing the dynamic fingerprints of two- and three-dimensional chemical waves in microbeads
,”
J. Phys. Chem. A
122
,
1967
1971
(
2018
).
9.
C. J.
Crook
,
A.
Smith
,
R. A. L.
Jones
, and
A. J.
Ryan
, “
Chemically induced oscillations in a pH-responsive hydrogel
,”
Phys. Chem. Chem. Phys.
4
,
1367
1369
(
2002
).
10.
R.
Yoshida
,
T.
Takahashi
,
T.
Yamaguchi
, and
H.
Ichijo
, “
Self-oscillating gel
,”
J. Am. Chem. Soc.
118
,
5134
5135
(
1996
).
11.
R.
Yoshida
, “
Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials
,”
Adv. Mater.
22
,
3463
3483
(
2010
).
12.
K.
Agladze
,
R. R.
Aliev
,
T.
Yamaguchi
, and
K.
Yoshikawa
, “
Chemical diode
,”
J. Phys. Chem.
100
,
13895
13897
(
1996
).
13.
J.
Gorecki
,
K.
Yoshikawa
, and
Y.
Igarashi
, “
On chemical reactors that can count
,”
J. Phys. Chem. A
107
,
1664
1669
(
2003
).
14.
J.
Holley
,
I.
Jahan
,
B. D. L.
Costello
,
L.
Bull
, and
A.
Adamatzky
, “
Logical and arithmetic circuits in Belousov–Zhabotinsky encapsulated disks
,”
Phys. Rev. E
84
,
056110
(
2011
).
15.
K.
Yoshikawa
,
R.
Aihara
, and
K.
Agladze
, “
Size-dependent Belousov−Zhabotinsky oscillation in small beads
,”
J. Phys. Chem. A.
102
,
7649
7652
(
1998
).
16.
J. J.
Tyson
and
P. C.
Fife
, “
Target patterns in a realistic model of the Belousov–Zhabotinskii reaction
,”
J. Chem. Phys.
73
,
2224
2237
(
1980
).
17.
T.
Winfree
, “
Rotating chemical reactions
,”
Sci. Am.
230
,
82
95
(
1974
).
18.
S. C.
Müller
,
T.
Plesser
, and
B.
Hess
, “
Two-dimensional spectrophotometry of spiral wave propagation in the Belousov–Zhabotinskii reaction: I. Experiments and digital data representation
,”
Phys. D: Nonlinear Phenom.
24
,
71
86
(
1987
).
19.
H.
Fukuda
,
H.
Morimura
, and
S.
Kai
, “
Global synchronization in two-dimensional lattices of discrete Belousov–Zhabotinsky oscillators
,”
Phys. D: Nonlinear Phenom.
205
,
80
86
(
2005
).
20.
M.
Yoshimoto
,
K.
Yoshikawa
,
Y.
Mori
, and
I.
Hanazaki
, “
Asymmetric coupling stabilizes the out-of-phase mode: Experimental evidence in the Belousov–Zhabotinsky reaction
,”
Chem. Phys. Lett.
189
,
18
22
(
1992
).
21.
M.
Kuze
,
H.
Kitahata
, and
S.
Nakata
, “
Traveling waves propagating through coupled microbeads in the Belousov–Zhabotinsky reaction
,”
Phys. Chem. Chem. Phys.
23
,
24175
24179
(
2021
).
22.
Z.
Noszticzius
,
W. D.
McCormick
, and
H. L.
Swinney
, “
Effect of trace impurities on a bifurcation structure in the Belousov–Zhabotinskii reaction: Preparation of high-purity malonic acid
,”
J. Phys. Chem.
91
,
5129
5134
(
1987
).
23.
L.
Györgyi
and
R. J.
Field
, “
A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction
,”
Nature
355
,
808
810
(
1992
).
24.
H. M.
Hastings
,
S. G.
Sobel
,
R. J.
Field
,
D.
Bongiovi
,
B.
Burke
,
D.
Richford
,
K.
Finzel
, and
M.
Garuthara
, “
Bromide control, bifurcation and activation in the Belousov−Zhabotinsky reaction
,”
J. Phys. Chem. A
112
,
4715
4718
(
2008
).
25.
T.
Sakurai
,
E.
Mihaliuk
,
F.
Chirila
, and
K.
Showalter
, “
Design and control of wave propagation patterns in excitable media
,”
Science
296
,
2009
2012
(
2002
).
26.
B. J.
Welsh
,
J.
Gomatam
, and
A. E.
Burgess
, “
Three-dimensional chemical waves in the Belousov–Zhabotinskii reaction
,”
Nature
304
,
611
614
(
1983
).
27.
V. K.
Vanag
,
L.
Yang
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
, “
Oscillatory cluster patterns in a homogeneous chemical system with global feedback
,”
Nature
406
,
389
391
(
2000
).
28.
B. T.
Ginn
,
B.
Steinbock
,
M.
Kahveci
, and
O.
Steinbock
, “
Microfluidic systems for the Belousov−Zhabotinsky reaction
,”
J. Phys. Chem. A
108
,
1325
1332
(
2004
).
29.
A.
Kaminaga
,
V. K.
Vanag
, and
I. R.
Epstein
, “
Wavelength halving in a transition between standing waves and traveling waves
,”
Phys. Rev. Lett.
95
,
58302
(
2005
).
30.
R. J.
Field
and
R. M.
Noyes
, “
Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction
,”
J. Chem. Phys.
60
,
1877
1884
(
1974
).
31.
A. B.
Rovinskii
and
A. M.
Zhabotinskii
, “
Mechanism and mathematical model of the oscillating bromate-ferroin-bromomalonic acid reaction
,”
J. Phys. Chem.
88
,
6081
6084
(
1984
).
32.
L.
Kuhnert
, “
A new optical photochemical memory device in a light-sensitive chemical active medium
,”
Nature
319
,
393
394
(
1986
).
33.
L.
Kuhnert
,
K. I.
Agladze
, and
V. I.
Krinsky
, “
Image processing using light-sensitive chemical waves
,”
Nature
337
,
244
247
(
1989
).
34.
S.
Kitawaki
,
K.
Shioiri
,
T.
Sakurai
, and
H.
Kitahata
, “
Control of the self-motion of a ruthenium-catalyzed Belousov–Zhabotinsky droplet
,”
J. Phys. Chem. C
116
,
26805
26809
(
2012
).
35.
K.
Gizynski
and
J.
Gorecki
, “
Chemical memory with states coded in light controlled oscillations of interacting Belousov–Zhabotinsky droplets
,”
Phys. Chem. Chem. Phys.
19
,
6519
6531
(
2017
).
36.
H.
Ševčíková
,
M.
Marek
, and
S. C.
Müller
, “
The reversal and splitting of waves in an excitable medium caused by an electrical field
,”
Science
257
,
951
954
(
1992
).
37.
J. J.
Taboada
,
A. P.
Muñuzuri
,
V.
Pérez-Muñuzuri
,
M.
Gómez-Gesteira
, and
V.
Pérez-Villar
, “
Spiral breakup induced by an electric current in a Belousov–Zhabotinsky medium
,”
Chaos
4
,
519
524
(
1994
).
38.
M.
Kuze
,
M.
Horisaka
,
N. J.
Suematsu
,
T.
Amemiya
,
O.
Steinbock
, and
S.
Nakata
, “
Switching between two oscillatory states depending on the electrical potential
,”
J. Phys. Chem. B
125
,
3638
3643
(
2021
).
39.
H.
Ševčíková
and
S. C.
Muller
, “
Electric-field-induced front deformation of Belousov–Zhabotinsky waves
,”
Phys. Rev. E
60
,
532
538
(
1999
).
40.
V.
Perez-Muñuzuri
,
R.
Aliev
,
B.
Vasiev
,
V.
Perez-Villar
, and
V. I.
Krinsky
, “
Super-spiral structures in an excitable medium
,”
Nature
353
,
740
742
(
1991
).
41.
Z.
Jusys
,
S.
Bruckenstein
, and
A. R.
Hillman
, “
New insights into the Belousov–Zhabotinskii reaction derived from EQCM measurements at a gold electrode
,”
Phys. Chem. Chem. Phys.
13
,
5373
5382
(
2011
).
42.
A. D.
Modestov
,
D. V.
Konev
,
A. E.
Antipov
,
M. M.
Petrov
,
R. D.
Pichugov
, and
M. A.
Vorotyntsev
, “
Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study
,”
Electrochim. Acta
259
,
655
663
(
2018
).

Supplementary Material

You do not currently have access to this content.