Most classical chaotic systems, such as the Lorenz system and the Chua circuit, have chaotic attractors in bounded regions. This article constructs and analyzes a different kind of non-smooth impulsive systems, which have growing numbers of attractors in the sense that the number of attractors or the scrolls of an attractor is growing as time increases, and these attractors or scrolls are not located in bounded regions. It is found that infinitely many chaotic attractors can be generated in some of such systems. As an application, both theoretical and numerical analyses of an impulsive Lorenz-like system with infinitely many attractors are demonstrated.

1.
F.
Angulo
,
C.
Ocampo
,
G.
Olivar
, and
R.
Ramos
, “
Nonlinear and nonsmooth dynamics in a DC-DC Buck converter: Two experimental set-ups
,”
Nonlinear Dyn.
46
,
239
257
(
2006
).
2.
S.
Adly
,
A Variational Approach to Nonsmooth Dynamics: Applications in Unilateral Mechanics and Electronics
(
Springer
,
Berlin
,
2017
).
3.
M. D.
Bernardo
,
C. J.
Budd
,
A. R.
Champneys
,
P.
Kowalczyk
,
A. B.
Nordmark
,
G. O.
Tost
, and
P. T.
Piiroinen
, “
Bifurcations in nonsmooth dynamical systems
,”
SIAM Rev.
50
,
629
701
(
2008
).
4.
V.
Lakshmikantham
,
D. D.
Bainov
, and
P. S.
Simeonov
,
Theory of Impulsive Differential Equations
(
World Scientific
,
Singapore
,
1989
).
5.
H.
Jiang
,
L.
Zhang
,
Z.
Chen
, and
Q.
Bi
, “
Non-smooth bifurcation analysis of Chen system via impulsive force
,”
Acta Phys. Sin.
61
(
8
),
82
89
(
2012
).
6.
C.
Li
,
X.
Yu
,
Z.
Liu
, and
T.
Huang
, “
Asynchronous impulsive containment control in switched multi-agent systems
,”
Inf. Sci.
370-371
,
667
679
(
2016
).
7.
S.
Yang
,
X.
Liao
, and
Y.
Liu
, “
Second-order consensus in directed networks of identical nonlinear dynamics via impulsive control
,”
Neurocomputing
179
,
290
297
(
2016
).
8.
X.
Zhang
,
C.
Li
, and
T.
Huang
, “
Hybrid impulsive and switching Hopfield neural networks with state-dependent impulses
,”
Neural Netw.
93
,
176
184
(
2017
).
9.
L.
Vu
,
D.
Chatterjee
, and
D.
Liberzon
, “
Input-to-state stability of switched systems and switching adaptive control
,”
Automatica
43
,
639
646
(
2007
).
10.
J.
Yao
,
Z.
Guan
,
G.
Chen
, and
D. W. C.
Ho
, “
Stability, robust stabilization and H control of singular-impulsive systems via switching control
,”
Syst. Control Lett.
55
,
879
886
(
2006
).
11.
G. A.
Leonov
and
N. V.
Kuznetsov
, “
Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits
,”
Int. J. Bifurc. Chaos
23
,
1330002
(
2013
).
12.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
V. I.
Vagaitsev
, “
Localization of hidden Chua’s attractors
,”
Phys. Lett. A
375
,
2230
2233
(
2011
).
13.
X.
Wang
and
G.
Chen
, “
Constructing a chaotic system with any number of equilibria
,”
Nonlinear Dyn.
71
,
429
436
(
2013
).
14.
D.
Dudkowski
,
S.
Jafari
,
T.
Kapitaniak
,
N. V.
Kuznetsov
,
G. A.
Leonov
, and
A.
Prasad
, “
Hidden attractors in dynamical systems
,”
Phys. Rep.
637
,
1
50
(
2016
).
15.
Chaotic Systems with Multistability and Hidden Attractors, edited by X. Wang, N. V. Kuznetsov, and G. Chen (Springer, Berlin, 2021).
16.
X.
Zhang
and
G.
Chen
, “
Constructing an autonomous system with infinitely many chaotic attractors
,”
Chaos
27
,
071101
(
2017
).
17.
A.
Ahmadi
,
K.
Rajagopal
,
V.-T.
Pham
,
O.
Boubaker
, and
S.
Jafari
,
Recent Advances in Chaotic Systems and Synchronization: From Theory to Real World Applications
(
Academic Press
,
2019
).
18.
B.
Ramakrishnan
,
A.
Ahmadi
,
F.
Nazarimehr
,
H.
Natiq
,
S.
Jafari
, and
I.
Hussain
, “
Oyster oscillator: A novel mega-stable nonlinear chaotic system
,”
Eur. Phys. J. Spec. Top.
(published online 2021).
19.
D.
Veeman
,
A.
Alanezi
,
H.
Natiq
,
S.
Jafari
, and
A. A. A.
El-Latif
, “
A chaotic quadratic oscillator with only squared terms: Multistability, impulsive control, and circuit design
,”
Symmetry
14
,
259
(
2022
).
20.
E.
Lorenz
, “
Deterministic non-periodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
21.
G.
Chen
and
T.
Ueta
, “
Yet another chaotic attractor
,”
Int. J. Bifurc. Chaos
9
,
1465
1466
(
1999
).
22.
S.
Hawking
and
L.
Mlodinow
,
The Grand Design
(
Bantam
,
2010
).
23.
Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, edited by M. Tegmark, J. D. Barrow, P. C. W. Davies, and C. L. Harper, Jr. (Cambridge University Press, 2004).
24.
D.
Li
,
J.
Lu
,
X.
Wu
, and
G.
Chen
, “
Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system
,”
J. Math. Anal. Appl.
323
,
844
853
(
2006
).
25.
G.
Leonov
,
A.
Bunin
, and
N.
Koksch
, “
Attractor localization of the Lorenz system
,”
Z. Angew. Math. Mech.
67
,
649
656
(
1987
).
26.
X.
Liao
, “
On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization
,”
Sci. China Ser. E
34
,
1404
1419
(
2004
).
27.
P.
Dirac
,
The Principles of Quantum Mechanics
(
Clarendon Press
,
Oxford
,
1958
).
28.
G. B.
Arfken
and
H. J.
Weber
,
Mathematical Methods for Physicists
(
Academic Press
,
Boston, MA
,
2000
).
29.
L.
Schwartz
,
Théorie des Distribution 1
(
Hermann
,
1950
).
30.
I. M.
Gel’fand
and
G. E.
Shilov
,
Generalized Functions 1–5
(
Academic Press
,
1966–1968
).
31.
A. N.
Churilov
,
A.
Medvedev
, and
Zh. T.
Zhusubaliyev
, “
Impulsive Goodwin oscillator with large delay: Periodic oscillations, bistability, and attractors
,”
Nonlinear Anal. Hybrid Syst.
21
,
171
183
(
2016
).
32.
A. F.
Filippov
,
Differential Equations with Discontinuous Righthand Sides
(
Kluwer
,
Dordrecht, The Netherlands
,
1988
).
33.
P.
Kowalczyk
,
M.
Di Bernardo
,
A. R.
Champneys
,
S. J.
Hogan
,
M.
Homer
,
Yu. A.
Kuznetsov
,
A.
Nordmark
, and
P. T.
Piiroinen
, “
Two-parameter nonsmooth bifurcations of limit cycles: Classification and open problems
,”
Int. J. Bifurc. Chaos
16
,
601
629
(
2006
).
34.
A. P.
Kuznetsov
,
L. V.
Turukina
, and
E.
Mosekilde
, “
Dynamical systems of different classes as models of the kicked nonlinear oscillator
,”
Int. J. Bifurc. Chaos
11
,
1065
1077
(
2001
).
35.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer-Verlag
,
New York
,
1990
).
You do not currently have access to this content.