We propose a definition of the asymptotic phase for quantum nonlinear oscillators from the viewpoint of the Koopman operator theory. The asymptotic phase is a fundamental quantity for the analysis of classical limit-cycle oscillators, but it has not been defined explicitly for quantum nonlinear oscillators. In this study, we define the asymptotic phase for quantum oscillatory systems by using the eigenoperator of the backward Liouville operator associated with the fundamental oscillation frequency. By using the quantum van der Pol oscillator with a Kerr effect as an example, we illustrate that the proposed asymptotic phase appropriately yields isochronous phase values in both semiclassical and strong quantum regimes.
REFERENCES
1.
P. J.
Thomas
and B.
Lindner
, “Asymptotic phase for stochastic oscillators
,” Phys. Rev. Lett.
113
(25
), 254101
(2014
). 2.
Y.
Kato
, J.
Zhu
, W.
Kurebayashi
, and H.
Nakao
, “Asymptotic phase and amplitude for classical and semiclassical stochastic oscillators via Koopman operator theory
,” Mathematics
9
(18
), 2188
(2021
). 3.
A. T.
Winfree
, The Geometry of Biological Time
(Springer
, New York
, 2001
).4.
Y.
Kuramoto
, Chemical Oscillations, Waves, and Turbulence
(Springer
, Berlin
, 1984
).5.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences
(Cambridge University Press
, Cambridge
, 2001
).6.
H.
Nakao
, “Phase reduction approach to synchronisation of nonlinear oscillators
,” Contemp. Phys.
57
(2
), 188
–214
(2016
). 7.
G. B.
Ermentrout
and D. H.
Terman
, Mathematical Foundations of Neuroscience
(Springer
, New York
, 2010
).8.
9.
M. H.
Matheny
, J.
Emenheiser
, W.
Fon
, A.
Chapman
, A.
Salova
, M.
Rohden
, J.
Li
, M.
Hudoba de Badyn
, M.
Pósfai
, L.
Duenas-Osorio
, M.
Mesbahi
, J. P.
Crutchfield
, M. C.
Cross
, R. M.
Dsouza
, and M. L.
Roukes
, “Exotic states in a simple network of nanoelectromechanical oscillators
,” Science
363
(6431
), eaav7932
(2019
). 10.
S.
Kreinberg
, X.
Porte
, D.
Schicke
, B.
Lingnau
, C.
Schneider
, S.
Höfling
, I.
Kanter
, K.
Lüdge
, and S.
Reitzenstein
, “Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels
,” Nat. Commun.
10
(1
), 137
(2019
). 11.
H.
Singh
, S.
Bhuktare
, A.
Bose
, A.
Fukushima
, K.
Yakushiji
, S.
Yuasa
, H.
Kubota
, and A. A.
Tulapurkar
, “Mutual synchronization of spin-torque nano-oscillators via Oersted magnetic fields created by waveguides
,” Phys. Rev. Appl.
11
(5
), 054028
(2019
). 12.
M. F.
Colombano
, G.
Arregui
, N. E.
Capuj
, A.
Pitanti
, J.
Maire
, A.
Griol
, B.
Garrido
, A.
Martinez
, C. M.
Sotomayor-Torres
, and D.
Navarro-Urrios
, “Synchronization of optomechanical nanobeams by mechanical interaction
,” Phys. Rev. Lett.
123
(1
), 017402
(2019
). 13.
T. E.
Lee
and H. R.
Sadeghpour
, “Quantum synchronization of quantum van der Pol oscillators with trapped ions
,” Phys. Rev. Lett.
111
(23
), 234101
(2013
). 14.
S.
Walter
, A.
Nunnenkamp
, and C.
Bruder
, “Quantum synchronization of a driven self-sustained oscillator
,” Phys. Rev. Lett.
112
(9
), 094102
(2014
). 15.
S.
Sonar
, M.
Hajdušek
, M.
Mukherjee
, R.
Fazio
, V.
Vedral
, S.
Vinjanampathy
, and L.-C.
Kwek
, “Squeezing enhances quantum synchronization
,” Phys. Rev. Lett.
120
(16
), 163601
(2018
). 16.
Y.
Kato
, N.
Yamamoto
, and H.
Nakao
, “Semiclassical phase reduction theory for quantum synchronization
,” Phys. Rev. Res.
1
, 033012
(2019
). 17.
W.-K.
Mok
, L.-C.
Kwek
, and H.
Heimonen
, “Synchronization boost with single-photon dissipation in the deep quantum regime
,” Phys. Rev. Res.
2
(3
), 033422
(2020
). 18.
T. E.
Lee
, C.-K.
Chan
, and S.
Wang
, “Entanglement tongue and quantum synchronization of disordered oscillators
,” Phys. Rev. E
89
(2
), 022913
(2014
). 19.
D.
Witthaut
, S.
Wimberger
, R.
Burioni
, and M.
Timme
, “Classical synchronization indicates persistent entanglement in isolated quantum systems
,” Nat. Commun.
8
, 14829
(2017
). 20.
A.
Roulet
and C.
Bruder
, “Quantum synchronization and entanglement generation
,” Phys. Rev. Lett.
121
(6
), 063601
(2018
). 21.
N.
Lörch
, E.
Amitai
, A.
Nunnenkamp
, and C.
Bruder
, “Genuine quantum signatures in synchronization of anharmonic self-oscillators
,” Phys. Rev. Lett.
117
(7
), 073601
(2016
). 22.
N.
Lörch
, S. E.
Nigg
, A.
Nunnenkamp
, R. P.
Tiwari
, and C.
Bruder
, “Quantum synchronization blockade: Energy quantization hinders synchronization of identical oscillators
,” Phys. Rev. Lett.
118
(24
), 243602
(2017
). 23.
S. E.
Nigg
, “Observing quantum synchronization blockade in circuit quantum electrodynamics
,” Phys. Rev. A
97
(1
), 013811
(2018
). 24.
T.
Weiss
, A.
Kronwald
, and F.
Marquardt
, “Noise-induced transitions in optomechanical synchronization
,” New J. Phys.
18
(1
), 013043
(2016
). 25.
N.
Es’ haqi Sani
, G.
Manzano
, R.
Zambrini
, and R.
Fazio
, “Synchronization along quantum trajectories
,” Phys. Rev. Res.
2
(2
), 023101
(2020
). 26.
Y.
Kato
and H.
Nakao
, “Enhancement of quantum synchronization via continuous measurement and feedback control
,” New J. Phys.
23
(1
), 013007
(2021
). 27.
Y.
Kato
and H.
Nakao
, “Instantaneous phase synchronization of two decoupled quantum limit-cycle oscillators induced by conditional photon detection
,” Phys. Rev. Res.
3
(1
), 013085
(2021
). 28.
W.
Li
, N.
Es’haqi Sani
, W.-Z.
Zhang
, and D.
Vitali
, “Quantum zeno effect in self-sustaining systems: Suppressing phase diffusion via repeated measurements
,” Phys. Rev. A
103
(4
), 043715
(2021
). 29.
A. W.
Laskar
, P.
Adhikary
, S.
Mondal
, P.
Katiyar
, S.
Vinjanampathy
, and S.
Ghosh
, “Observation of quantum phase synchronization in spin-1 atoms
,” Phys. Rev. Lett.
125
(1
), 013601
(2020
). 30.
M.
Koppenhöfer
, C.
Bruder
, and A.
Roulet
, “Quantum synchronization on the IBM Q system
,” Phys. Rev. Res.
2
(2
), 023026
(2020
). 31.
Y.
Kato
and H.
Nakao
, “Semiclassical optimization of entrainment stability and phase coherence in weakly forced quantum limit-cycle oscillators
,” Phys. Rev. E
101
(1
), 012210
(2020
). 32.
M. R.
Hush
, W.
Li
, S.
Genway
, I.
Lesanovsky
, and A. D.
Armour
, “Spin correlations as a probe of quantum synchronization in trapped-ion phonon lasers
,” Phys. Rev. A
91
(6
), 061401
(2015
). 33.
T.
Weiss
, S.
Walter
, and F.
Marquardt
, “Quantum-coherent phase oscillations in synchronization
,” Phys. Rev. A
95
(4
), 041802
(2017
). 34.
A.
Mari
, A.
Farace
, N.
Didier
, V.
Giovannetti
, and R.
Fazio
, “Measures of quantum synchronization in continuous variable systems
,” Phys. Rev. Lett.
111
(10
), 103605
(2013
). 35.
M.
Xu
, D. A.
Tieri
, E. C.
Fine
, J. K.
Thompson
, and M. J.
Holland
, “Synchronization of two ensembles of atoms
,” Phys. Rev. Lett.
113
(15
), 154101
(2014
). 36.
A.
Roulet
and C.
Bruder
, “Synchronizing the smallest possible system
,” Phys. Rev. Lett.
121
(6
), 053601
(2018
). 37.
A.
Chia
, L. C.
Kwek
, and C.
Noh
, “Relaxation oscillations and frequency entrainment in quantum mechanics
,” Phys. Rev. E
102
(4
), 042213
(2020
). 38.
L.
Ben Arosh
, M. C.
Cross
, and R.
Lifshitz
, “Quantum limit cycles and the Rayleigh and van der Pol oscillators
,” Phys. Rev. Res.
3
(1
), 013130
(2021
). 39.
N.
Jaseem
, M.
Hajdušek
, P.
Solanki
, L.-C.
Kwek
, R.
Fazio
, and S.
Vinjanampathy
, “Generalized measure of quantum synchronization
,” Phys. Rev. Res.
2
(4
), 043287
(2020
). 40.
N.
Jaseem
, M.
Hajdušek
, V.
Vedral
, R.
Fazio
, L.-C.
Kwek
, and S.
Vinjanampathy
, “Quantum synchronization in nanoscale heat engines
,” Phys. Rev. E
101
(2
), 020201
(2020
). 41.
A.
Cabot
, G.
Luca Giorgi
, and R.
Zambrini
, “Metastable quantum entrainment
,” New J. Phys.
23
(10
), 103017
(2021
). 42.
A.
Mauroy
, I.
Mezić
, and J.
Moehlis
, “Isostables, isochrons, and Koopman spectrum for the action–angle representation of stable fixed point dynamics
,” Physica D
261
, 19
–30
(2013
). 43.
Y. S.
Mauroy
and I.
Mezic
, The Koopman Operator in Systems and Control
(Springer
, 2020
).44.
S.
Shirasaka
, W.
Kurebayashi
, and H.
Nakao
, “Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems
,” Chaos
27
(2
), 023119
(2017
). 45.
Y.
Kuramoto
and H.
Nakao
, “On the concept of dynamical reduction: The case of coupled oscillators
,” Philos. Trans. R. Soc. A
377
(2160
), 20190041
(2019
). 46.
O.
Junge
, J. E.
Marsden
, and I.
Mezic
, “Uncertainty in the dynamics of conservative maps,” in 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601) (IEEE, 2004), Vol. 2, pp. 2225–2230.47.
N.
Črnjarić-Žic
, S.
Maćešić
, and I.
Mezić
, “Koopman operator spectrum for random dynamical systems
,” J. Nonlinear Sci.
30
(5
), 2007
–2056
(2020
). 48.
M. T.
Wanner
, Robust Approximation of the Stochastic Koopman Operator
(University of California
, Santa Barbara
, 2020
).49.
50.
D. A.
Lidar
, I. L.
Chuang
, and K. B.
Whaley
, “Decoherence-free subspaces for quantum computation
,” Phys. Rev. Lett.
81
(12
), 2594
(1998
). 51.
H. J.
Carmichael
, Statistical Methods in Quantum Optics 1, 2
(Springer
, New York
, 2007
).52.
53.
H.-P.
Breuer
et al., The Theory of Open Quantum Systems
(Oxford University Press on Demand
, 2002
).54.
A. C. Y.
Li
, F.
Petruccione
, and J.
Koch
, “Perturbative approach to Markovian open quantum systems
,” Sci. Rep.
4
, 1301
(2015
). 55.
K. E.
Cahill
and R. J.
Glauber
, “Density operators and quasiprobability distributions
,” Phys. Rev.
177
(5
), 1882
(1969
). 56.
V. V.
Albert
, “Lindbladians with multiple steady states: Theory and applications,” arXiv:1802.00010 (2018).57.
Y.
Kato
and H.
Nakao
, “Quantum asymptotic phase reveals signatures of quantum synchronization,” arXiv:2006.00760 (2020).58.
A.
Pérez-Cervera
, B.
Lindner
, and P. J.
Thomas
, “Isostables for stochastic oscillators
,” Phys. Rev. Lett.
127
(25
), 254101
(2021
). 59.
J. R.
Johansson
, P. D.
Nation
, and F.
Nori
, “QuTiP: An open-source Python framework for the dynamics of open quantum systems
,” Comput. Phys. Commun.
183
(8
), 1760
–1772
(2012
). 60.
J. R.
Johansson
, P. D.
Nation
, and F.
Nori
, “QuTiP 2: A Python framework for the dynamics of open quantum systems
,” Comput. Phys. Commun.
184
, 1234
–1240
(2013
). 61.
I.
Mezić
, “Spectral properties of dynamical systems, model reduction and decompositions
,” Nonlinear Dyn.
41
(1-3
), 309
–325
(2005
). 62.
B.
Oksendal
, Stochastic Differential Equations: An Introduction with Applications
(Springer Science & Business Media
, 2013
).63.
P. J.
Thomas
and B.
Lindner
, “Phase descriptions of a multidimensional Ornstein-Uhlenbeck process
,” Phys. Rev. E
99
(6
), 062221
(2019
). 64.
S. M.
Barnett
and S.
Stenholm
, “Spectral decomposition of the Lindblad operator
,” J. Mod. Opt.
47
(14-15
), 2869
–2882
(2000
). 65.
H.-J.
Briegel
and B.-G.
Englert
, “Quantum optical master equations: The use of damping bases
,” Phys. Rev. A
47
(4
), 3311
(1993
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.