In this work, we study the phenomenon of disordered quenching in arrays of coupled Bautin oscillators, which are the normal form for bifurcation in the vicinity of the equilibrium point when the first Lyapunov coefficient vanishes and the second one is nonzero. For particular parameter values, the Bautin oscillator is in a bistable regime with two attractors—the equilibrium and the limit cycle—whose basins are separated by the unstable limit cycle. We consider arrays of coupled Bautin oscillators and study how they become quenched with increasing coupling strength. We analytically show the existence and stability of the dynamical regimes with amplitude disorder in a ring of coupled Bautin oscillators with identical natural frequencies. Next, we numerically provide evidence that disordered oscillation quenching holds for rings as well as chains with nonidentical natural frequencies and study the characteristics of this effect.

1.
H.
Fujii
,
H.
Ito
,
K.
Aihara
,
N.
Ichinose
, and
M.
Tsukada
, “
Dynamical cell assembly hypothesis—Theoretical possibility of spatio-temporal coding in the cortex
,”
Neural Networks
9
,
1303
1350
(
1996
).
2.
G.
Buzsáki
and
A.
Draguhn
, “
Neuronal oscillations in cortical networks
,”
Science
304
,
1926
1929
(
2004
).
3.
T. J.
Sejnowski
and
O.
Paulsen
, “
Network oscillations: Emerging computational principles
,”
J. Neurosci.
26
,
1673
1676
(
2006
).
4.
G.
Buzsáki
,
C. A.
Anastassiou
, and
C.
Koch
, “
The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes
,”
Nat. Rev. Neurosci.
13
,
407
420
(
2012
).
5.
K. C.
Wedgwood
,
K. K.
Lin
,
R.
Thul
, and
S.
Coombes
, “
Phase-amplitude descriptions of neural oscillator models
,”
J. Math. Neurosci.
3
,
1
22
(
2013
).
6.
L. V.
Gambuzza
,
J.
Gómez-Gardeñes
, and
M.
Frasca
, “
Amplitude dynamics favors synchronization in complex networks
,”
Sci. Rep.
6
,
1
9
(
2016
).
7.
O. V.
Maslennikov
and
V. I.
Nekorkin
, “
Hierarchical transitions in multiplex adaptive networks of oscillatory units
,”
Chaos
28
,
121101
(
2018
).
8.
L.
Schmidt
,
K.
Schönleber
,
K.
Krischer
, and
V.
García-Morales
, “
Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling
,”
Chaos
24
,
013102
(
2014
).
9.
A.
Zakharova
,
M.
Kapeller
, and
E.
Schöll
, “
Chimera death: Symmetry breaking in dynamical networks
,”
Phys. Rev. Lett.
112
,
154101
(
2014
).
10.
H.
Bi
,
X.
Hu
,
X.
Zhang
,
Y.
Zou
,
Z.
Liu
, and
S.
Guan
, “
Explosive oscillation death in coupled Stuart-Landau oscillators
,”
Europhys. Lett.
108
,
50003
(
2014
).
11.
G.
Bordyugov
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Self-emerging and turbulent chimeras in oscillator chains
,”
Phys. Rev. E
82
,
035205
(
2010
).
12.
O. V.
Maslennikov
and
V. I.
Nekorkin
, “
Effects of structure-dynamics correlation on hierarchical transitions in heterogeneous oscillatory networks
,”
Eur. Phys. J. Spec. Topics
227
,
1221
1230
(
2018
).
13.
A. A.
Selivanov
,
J.
Lehnert
,
T.
Dahms
,
P.
Hövel
,
A. L.
Fradkov
, and
E.
Schöll
, “
Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators
,”
Phys. Rev. E
85
,
016201
(
2012
).
14.
W.
Zou
,
D.
Senthilkumar
,
M.
Zhan
, and
J.
Kurths
, “
Quenching, aging, and reviving in coupled dynamical networks
,”
Phys. Rep.
931
,
1
72
(
2021
).
15.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
, “
Oscillation quenching mechanisms: Amplitude vs oscillation death
,”
Phys. Rep.
531
,
173
199
(
2013
).
16.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer
,
2004
), Vol. 112.
17.
E. W.
Large
,
F. V.
Almonte
, and
M. J.
Velasco
, “
A canonical model for gradient frequency neural networks
,”
Phys. D
239
,
905
911
(
2010
).
18.
J. C.
Kim
and
E. W.
Large
, “
Signal processing in periodically forced gradient frequency neural networks
,”
Front. Comput. Neurosci.
9
,
152
(
2015
).
19.
J. C.
Kim
and
E. W.
Large
, “
Mode locking in periodically forced gradient frequency neural networks
,”
Phys. Rev. E
99
,
022421
(
2019
).
20.
J. C.
Kim
and
E. W.
Large
, “
Multifrequency Hebbian plasticity in coupled neural oscillators
,”
Biol. Cybern.
115
,
43
57
(
2021
).
21.
D.
Biswas
,
S.
Pallikkulath
, and
V. S.
Chakravarthy
, “
A complex-valued oscillatory neural network for storage and retrieval of multidimensional aperiodic signals
,”
Front. Comput. Neurosci.
15
,
551111
(
2021
).
22.
V. I.
Nekorkin
and
M. G.
Velarde
et al.,
Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos
(
Springer
,
2002
).
23.
V. S.
Afraimovich
and
S.-B.
Hsu
,
Lectures on Chaotic Dynamical Systems
(
American Mathematical Soc.
,
2003
), p. 28.
24.
V.
Nekorkin
and
V.
Makarov
, “
Spatial chaos in a chain of coupled bistable oscillators
,”
Phys. Rev. Lett.
74
,
4819
(
1995
).
25.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
2012
).
26.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
, “
Loss of coherence in dynamical networks: Spatial chaos and chimera states
,”
Phys. Rev. Lett.
106
,
234102–1
234102–4
(
2011
).
You do not currently have access to this content.