The dynamics of ensembles of phase oscillators are usually described considering their infinite-size limit. In practice, however, this limit is fully accessible only if the Ott–Antonsen theory can be applied, and the heterogeneity is distributed following a rational function. In this work, we demonstrate the usefulness of a moment-based scheme to reproduce the dynamics of infinitely many oscillators. Our analysis is particularized for Gaussian heterogeneities, leading to a Fourier–Hermite decomposition of the oscillator density. The Fourier–Hermite moments obey a set of hierarchical ordinary differential equations. As a preliminary experiment, the effects of truncating the moment system and implementing different closures are tested in the analytically solvable Kuramoto model. The moment-based approach proves to be much more efficient than the direct simulation of a large oscillator ensemble. The convenience of the moment-based approach is exploited in two illustrative examples: (i) the Kuramoto model with bimodal frequency distribution, and (ii) the “enlarged Kuramoto model” (endowed with nonpairwise interactions). In both systems, we obtain new results inaccessible through direct numerical integration of populations.

1.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
New York
,
1980
).
2.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
).
3.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
4.
O. V.
Popovych
,
Y. L.
Maistrenko
, and
P. A.
Tass
, “
Phase chaos in coupled oscillators
,”
Phys. Rev. E
71
,
065201(R)
(
2005
).
5.
H.
Chiba
, “
Continuous limit and the moments system for the globally coupled phase oscillators
,”
Discrete Contin. Dyn. Syst. Ser. A
33
,
1891
1903
(
2013
).
6.
I.
León
and
D.
Pazó
, “
Enlarged Kuramoto model: Secondary instability and transition to collective chaos
,”
Phys. Rev. E
105
,
L042201
(
2022
).
7.
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
,
Synchronization, a Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
8.
H.
Nakao
, “
Phase reduction approach to synchronisation of nonlinear oscillators
,”
Contemp. Phys.
57
,
188
214
(
2016
).
9.
D. C.
Michaels
,
E. P.
Matyas
, and
J.
Jalife
, “
Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis
,”
Circ. Res.
61
,
704
714
(
1987
).
10.
J.
Buck
and
E.
Buck
, “
Synchronous fireflies
,”
Sci. Am.
234
,
74
(
1976
).
11.
K.
Wiesenfeld
,
P.
Colet
, and
S. H.
Strogatz
, “
Synchronization transitions in a disordered Josephson series array
,”
Phys. Rev. Lett.
76
,
404
407
(
1996
).
12.
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Hyperion Press
,
New York
,
2003
).
13.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
14.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, Berlin, 1975), pp. 420–422.
15.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
).
16.
E.
Montbrió
and
D.
Pazó
, “
Kuramoto model for excitation-inhibition-based oscillations
,”
Phys. Rev. Lett.
120
,
244101
(
2018
).
17.
K. P.
O’Keeffe
,
H.
Hong
, and
S. H.
Strogatz
, “
Oscillators that sync and swarm
,”
Nat. Commun.
8
,
1
13
(
2017
).
18.
S.
Chandra
,
M.
Girvan
, and
E.
Ott
, “
Continuous versus discontinuous transitions in the d-dimensional generalized Kuramoto model: Odd d is different
,”
Phys. Rev. X
9
,
011002
(
2019
).
19.
C.
Bick
,
M.
Goodfellow
,
C. R.
Laing
, and
E. A.
Martens
, “
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review
,”
J. Math. Neurosci.
10
,
1
43
(
2020
).
20.
S. H.
Strogatz
and
R. E.
Mirollo
, “
Stability of incoherence in a population of coupled oscillators
,”
J. Stat. Phys.
63
,
613
635
(
1991
).
21.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
22.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
23.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez-Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
24.
C. J.
Perez
and
F.
Ritort
, “
A moment-based approach to the dynamical solution of the Kuramoto model
,”
J. Phys. A: Math. Gen.
30
,
8095
8103
(
1997
).
25.
H.
Daido
, “
Critical conditions of macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators
,”
Prog. Theor. Phys.
89
,
929
934
(
1993
).
26.
H.
Sakaguchi
, “
Cooperative phenomena in coupled oscillator systems under external fields
,”
Prog. Theor. Phys.
79
,
39
46
(
1988
).
27.
Throughout this work, the equivalence between continuous and finite-N formulations is taken for granted (as proven, for example, for the KM in Ref. 5). This is not always the case though. In a model analyzed in Ref. 39, θ˙j=σωj+εR2sin(2Ψ2θj), incoherence remains unstable for any finite N (and large enough ε), while it is stable in the continuum limit. For finite populations, residence times near incoherence diverge with N. Such, perhaps pathological, situations require a careful analysis and are ignored hereafter.
28.
S.
Shinomoto
and
Y.
Kuramoto
, “
Phase transitions in active rotator systems
,”
Prog. Theor. Phys.
75
,
1105
1110
(
1986
).
29.
H.
Hong
,
H.
Chaté
,
H.
Park
, and
L.-H.
Tang
, “
Entrainment transition in populations of random frequency oscillators
,”
Phys. Rev. Lett.
99
,
184101
(
2007
).
30.
H.
Hong
,
H.
Chaté
,
L.-H.
Tang
, and
H.
Park
, “
Finite-size scaling, dynamic fluctuations, and hyperscaling relation in the Kuramoto model
,”
Phys. Rev. E
92
,
022122
(
2015
).
31.
This condition can be expressed in terms of the modified Bessel functions 1=επ8eR2ε2/4[I0(R2ε24)+I1(R2ε24)].
32.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
33.
E. A.
Martens
,
E.
Barreto
,
S. H.
Strogatz
,
E.
Ott
,
P.
So
, and
T. M.
Antonsen
, “
Exact results for the Kuramoto model with a bimodal frequency distribution
,”
Phys. Rev. E
79
,
026204
(
2009
).
34.
D.
Pazó
and
E.
Montbrió
, “
Existence of hysteresis in the Kuramoto model with bimodal frequency distributions
,”
Phys. Rev. E
80
,
046215
(
2009
).
35.
B.
Pietras
,
N.
Deschle
, and
A.
Daffertshofer
, “
First-order phase transitions in the Kuramoto model with compact bimodal frequency distributions
,”
Phys. Rev. E
98
,
062219
(
2018
).
36.
S.
Guo
,
Y.
Xie
,
Q.
Dai
,
H.
Li
, and
J.
Yang
, “
Dynamics in the Sakaguchi-Kuramoto model with bimodal frequency distribution
,”
PLoS One
15
,
1
13
(
2020
).
37.
G.
Dangelmayr
and
E.
Knobloch
, “
The Takens-Bogdanov bifurcation with O(2)-symmetry
,”
Philos. Trans. Royal Soc. A
322
,
243
279
(
1987
).
38.
T.
Tanaka
and
T.
Aoyagi
, “
Multistable attractors in a network of phase oscillators with three-body interactions
,”
Phys. Rev. Lett.
106
,
224101
(
2011
).
39.
M.
Komarov
and
A.
Pikovsky
, “
Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling
,”
Phys. Rev. E
92
,
020901(R)
(
2015
).
40.
P. S.
Skardal
and
A.
Arenas
, “
Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes
,”
Phys. Rev. Lett.
122
,
248301
(
2019
).
41.
I.
León
and
D.
Pazó
, “
Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation
,”
Phys. Rev. E
100
,
012211
(
2019
).
42.
M.
Carlu
,
F.
Ginelli
, and
A.
Politi
, “
Origin and scaling of chaos in weakly coupled phase oscillators
,”
Phys. Rev. E
97
,
012203
(
2018
).
43.
T. B.
Luke
,
E.
Barreto
, and
P.
So
, “
Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons
,”
Neural Comput.
25
,
3207
3234
(
2013
).
44.
T. B.
Luke
,
E.
Barreto
, and
P.
So
, “
Macroscopic complexity from an autonomous network of networks of theta neurons
,”
Front. Comput. Neurosci.
8
,
145
(
2014
).
45.
H.
Hong
and
S. H.
Strogatz
, “
Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators
,”
Phys. Rev. Lett.
106
,
054102
(
2011
).
46.
E.
Montbrió
and
D.
Pazó
, “
Shear diversity prevents collective synchronization
,”
Phys. Rev. Lett.
106
,
254101
(
2011
).
47.
D.
Pazó
and
E.
Montbrió
, “
The Kuramoto model with distributed shear
,”
EPL
95
,
60007
(
2011
).
48.
E.
Montbrió
and
D.
Pazó
, “
Collective synchronization in the presence of reactive coupling and shear diversity
,”
Phys. Rev. E
84
,
046206
(
2011
).
49.
D.
Iatsenko
,
S.
Petkoski
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths
,”
Phys. Rev. Lett.
110
,
064101
(
2013
).
50.
D.
Iatsenko
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Oscillator glass in the generalized Kuramoto model: Synchronous disorder and two-step relaxation
,”
Nat. Commun.
5
,
4188
(
2014
).
51.
D.
Pazó
,
E.
Montbrió
, and
R.
Gallego
, “
The Winfree model with heterogeneous phase-response curves: Analytical results
,”
J. Phys. A: Math. Theor.
52
,
154001
(
2019
).
You do not currently have access to this content.