The peroxidase–oxidase (PO) reaction is a paradigmatic (bio)chemical system well suited to study the organization and stability of self-sustained oscillatory phases typically present in nonlinear systems. The PO reaction can be simulated by the state-of-the-art Bronnikova–Fedkina–Schaffer–Olsen model involving ten coupled ordinary differential equations. The complex and dynamically rich distribution of self-sustained oscillatory stability phases of this model was recently investigated in detail. However, would it be possible to understand aspects of such a complex model using much simpler models? Here, we investigate stability phases predicted by three simple four-variable subnetworks derived from the complete model. While stability diagrams for such subnetworks are found to be distorted compared to those of the complete model, we find them to surprisingly preserve significant features of the original model as well as from the experimental system, e.g., period-doubling and period-adding scenarios. In addition, return maps obtained from the subnetworks look very similar to maps obtained in the experimental system under different conditions. Finally, two of the three subnetwork models are found to exhibit quint points, i.e., recently reported singular points where five distinct stability phases coalesce. We also provide experimental evidence that such quint points are present in the PO reaction.

1.
K.
Poole
, “
A review of the Canada Lynx, Lynx canadensis, in Canada
,”
Can. Field-Nat.
117
,
360
376
(
2003
).
2.
L.
Glass
, “
Synchronization and rhythmic processes in physiology
,”
Nature
410
,
277
284
(
2001
).
3.
N. M.
Woods
,
K. S. R.
Cuthbertson
, and
P. H.
Cobbold
, “
Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes
,”
Nature
319
,
600
602
(
1986
).
4.
B.
Hess
, “
Periodic patterns in biochemical reactions
,”
Q. Rev. Biophys.
30
,
121
176
(
1997
).
5.
S.
Nakamura
,
K.
Yokota
, and
I.
Yamazaki
, “
Sustained oscillations in a lactoperoxidase NADPH and O2 system
,”
Nature
222
,
794
(
1969
).
6.
A.
Scheeline
,
D. L.
Olson
,
E. P.
Williksen
,
G. A.
Horras
,
M. L.
Klein
, and
R.
Larter
, “
The peroxidase-oxidase oscillator and its constituent chemistries
,”
Chem. Rev.
97
,
739
756
(
1997
).
7.
H. B.
Dunford
,
Heme Peroxidases
(
Wiley-VCH
,
1999
).
8.
Chaos in Chemistry and Biochemistry, edited by R. J. Field and L. Györgyi (World Scientific, Singapore, 1993).
9.
R. J.
Field
, “
Chaos in the Belousov-Zhabotinsky reaction
,”
Mod. Phys. Lett. B
29
,
1530015
(
2015
).
10.
R. J.
Field
,
J. G.
Freire
, and
J. A. C.
Gallas
, “
Quint points lattice in a driven Belousov-Zhabotinsky reaction model
,”
Chaos
31
,
053124
(
2021
).
11.
J.
Maselko
and
I. R.
Epstein
, “
Chemical chaos in the chlorite-thiosulfate reaction
,”
J. Chem. Phys.
80
,
3175
3178
(
1984
).
12.
I.
Yamazaki
,
K.
Yokota
, and
R.
Nakajima
, “
Oscillatory oxidations of reduced pyridine nucleotide by peroxidase
,”
Biochem. Biophys. Res. Commun.
21
,
582
586
(
1965
).
13.
H.
Degn
, “
Compound-3 kinetics and chemiluminescence in oscillatory oxidation reactions catalyzed by horseradish peroxidase
,”
Biochim. Biophys. Acta
180
,
271
290
(
1969
).
14.
L. F.
Olsen
and
H.
Degn
, “
Chaos in an enzyme reaction
,”
Nature
267
,
177
178
(
1977
).
15.
L. F.
Olsen
and
H.
Degn
, “
Oscillatory kinetics of peroxidase-oxidase reaction in an open system–Experimental and theoretical studies
,”
Biochim. Biophys. Acta
523
,
321
334
(
1978
).
16.
B. D.
Aguda
,
L. L. H.
Frisch
, and
L.
Olsen
, “
Experimental-evidence for the coexistence of oscillatory and steady-states in the peroxidase-oxidase reaction
,”
J. Am. Chem. Soc.
112
,
6652
6656
(
1990
).
17.
T.
Geest
,
C. G.
Steinmetz
,
R.
Larter
, and
L. F.
Olsen
, “
Period-doubling bifurcations and chaos in an enzyme reaction
,”
J. Phys. Chem.
96
,
5678
5680
(
1992
).
18.
M. S.
Samples
,
Y.-F.
Hung
, and
J.
Ross
, “
Further experimental studies on the horseradish-peroxidase oxidase reaction
,”
J. Phys. Chem.
96
,
7338
7342
(
1992
).
19.
T.
Hauck
and
F. W.
Schneider
, “
Mixed-mode and quasi-periodic oscillations in the peroxidase oxidase reaction
,”
J. Phys. Chem.
97
,
391
397
(
1993
).
20.
M. J. B.
Hauser
and
L. F.
Olsen
, “
Mixed-mode oscillations and homoclinic chaos in an enzyme reaction
,”
J. Chem. Soc., Faraday Trans.
92
,
2857
2863
(
1996
).
21.
L. F.
Olsen
, “
An enzyme reaction with a strange attractor
,”
Phys. Lett. A
94
,
454
457
(
1983
).
22.
K.
Yokota
and
I.
Yamazaki
, “
Analysis and computer-simulation of aerobic oxidation of reduced nicotinamide adenine-dinucleotide catalyzed by horseradish-peroxidase
,”
Biochemistry
16
,
1913
1920
(
1977
).
23.
V. R.
Fedkina
,
F. I.
Ataullakhanov
, and
T. V.
Bronnikova
, “
Computer-simulation of sustained oscillations in peroxidase-oxidase reaction
,”
Biophys. Chem.
19
,
259
264
(
1984
).
24.
B. D.
Aguda
and
R.
Larter
, “
Sustained oscillations and bistability in a detailed mechanism of the peroxidase oxidase reaction
,”
J. Am. Chem. Soc.
112
,
2167
2174
(
1990
).
25.
B. D.
Aguda
and
R.
Larter
, “
Periodic chaotic sequences in a detailed mechanism of the peroxidase oxidase reaction
,”
J. Am. Chem. Soc.
113
,
7913
7916
(
1991
).
26.
D. L.
Olson
,
E. P.
Williksen
, and
A.
Scheeline
, “
An experimentally based model of the peroxidase-NADH biochemical oscillator—An enzyme-mediated chemical switch
,”
J. Am. Chem. Soc.
117
,
2
15
(
1995
).
27.
T. V.
Bronnikova
,
V. R.
Fed’kina
,
W. M.
Schaffer
, and
L. F.
Olsen
, “
Period-doubling bifurcations and chaos in a detailed model of the peroxidase-oxidase reaction
,”
J. Phys. Chem.
99
,
9309
9312
(
1995
).
28.
M. J. B.
Hauser
,
L. F.
Olsen
,
T. V.
Bronnikova
, and
W. M.
Schaffer
, “
Routes to chaos in the peroxidase-oxidase reaction: Period-doubling and period-adding
,”
J. Phys. Chem. B
101
,
5075
5083
(
1997
).
29.
M. J. B.
Hauser
and
J. A. C.
Gallas
, “
Nonchaos-mediated mixed-mode oscillations in an enzyme reaction system
,”
J. Phys. Chem. Lett.
5
,
4187
4193
(
2014
).
30.
T. V.
Bronnikova
,
W. M.
Schaffer
, and
L. F.
Olsen
, “
Quasiperiodicity in a detailed model of the peroxidase-oxidase reaction
,”
J. Chem. Phys.
105
,
10849
10859
(
1996
).
31.
T. V.
Bronnikova
,
W. M.
Schaffer
,
M. J. B.
Hauser
, and
L. F.
Olsen
, “
Routes to chaos in the peroxidase-oxidase reaction. 2. The fat torus scenario
,”
J. Phys. Chem. B
102
,
632
640
(
1998
).
32.
T. V.
Bronnikova
,
W. M.
Schaffer
, and
L. F.
Olsen
, “
Nonlinear dynamics of the peroxidase-oxidase reaction: I. Bistability and bursting oscillations at low enzyme concentrations
,”
J. Phys. Chem. B
105
,
310
321
(
2001
).
33.
L. F.
Olsen
,
T. V.
Bronnikova
, and
W. M.
Schaffer
, “
Secondary quasiperiodicity in the peroxidase-oxidase reaction
,”
Phys. Chem. Chem. Phys.
4
,
1292
1298
(
2002
).
34.
W. M.
Schaffer
,
T. V.
Bronnikova
, and
L. F.
Olsen
, “
Nonlinear dynamics of the peroxidase-oxidase reaction. II. Compatibility of an extended model with previously reported model-data correspondences
,”
J. Phys. Chem. B
105
,
5331
5340
(
2001
).
35.
H.
Degn
,
L. F.
Olsen
, and
J. W.
Perram
, “
Bistability, oscillation and chaos in an enzyme reaction
,”
Ann. N. Y. Acad. Sci.
316
,
623
637
(
1979
).
36.
J. A. C.
Gallas
,
M. J. B.
Hauser
, and
L. F.
Olsen
, “
Complexity of a peroxidase-oxidase reaction model
,”
Phys. Chem. Chem. Phys.
23
,
1943
1955
(
2021
).
37.
A.
Sensse
,
M. J. B.
Hauser
, and
M.
Eiswirth
, “
Feedback loops for Shilnikov chaos: The peroxidase-oxidase reaction
,”
J. Chem. Phys.
125
,
014901
(
2006
).
38.
A.
Sensse
and
M.
Eiswirth
, “
Feedback loops for chaos in activator-inhibitor systems
,”
J. Chem. Phys.
122
,
044516
(
2005
).
39.
J. G.
Freire
and
J. A. C.
Gallas
, “
Stern-Brocot trees in the periodicity of mixed-mode oscillations
,”
Phys. Chem. Chem. Phys.
13
,
12191
12198
(
2011
).
40.
J. A. C.
Gallas
, “
Non-quantum chirality in a driven Brusselator
,”
J. Phys.: Condens. Matter
34
,
144002
(
2022
).
41.
J. A. C.
Gallas
, “
Chirality detected in Hartley’s electronic oscillator
,”
Eur. Phys. J. Plus
136
,
59
(
2021
).
42.
J. A. C.
Gallas
, “
Chirality observed in a driven ruthenium-catalyzed Belousov–Zhabotinsky reaction model
,”
Phys. Chem. Chem. Phys.
23
,
25720
25726
(
2021
).
43.
C. K.
Volos
and
J. A. C.
Gallas
, “
Experimental evidence of quint points and non-quantum chirality in a minimalist autonomous electronic oscillator
,”
Eur. Phys. J. Plus
137
,
527
(
2022
).
44.
M. J. B.
Hauser
,
U.
Kummer
,
A. Z.
Larsen
, and
L. F.
Olsen
, “
Oscillatory dynamics protect enzymes and possibly cells against toxic substances
,”
Faraday Discuss.
120
,
215
227
(
2002
).
45.
P.
Frederickson
,
J. L.
Kaplan
,
E. D.
Yorke
, and
J. A.
Yorke
, “
The Lyapunov dimension of strange attractors
,”
J. Differ. Equ.
49
,
185
207
(
1983
).
46.
S.
Hoops
,
S.
Sahle
,
R.
Gauges
,
C.
Lee
,
J.
Pahle
,
N.
Simus
,
M.
Singhal
,
L.
Xu
,
P.
Mendes
, and
U.
Kummer
, “
Copasi—A complex pathway simulator
,”
Bioinformatics
22
,
3067
3074
(
2006
).
47.
J. A. C.
Gallas
, “
Structure of the parameter space of the Henon map
,”
Phys. Rev. Lett.
70
,
2714
2717
(
1993
).
48.
J. A. C.
Gallas
, “
Dissecting shrimps—Results for some one-dimensional physical models
,”
Physica A
202
,
196
223
(
1994
).
49.
L. F.
Olsen
and
A.
Lunding
, “
Chaos in the peroxidase-oxidase oscillator
,”
Chaos
31
,
013119
(
2021
).
50.
J. G.
Freire
,
M. R.
Gallas
, and
J. A. C.
Gallas
, “
Chaos-free oscillations
,”
Europhys. Lett.
118
,
38003
(
2017
).
51.
T. L.
Carroll
, “
Dimension of reservoir computers
,”
Chaos
30
,
013102
(
2020
).
You do not currently have access to this content.