We investigate how the interplay of the topology of the network of load transmitting connections and the amount of disorder of the strength of the connected elements determines the temporal evolution of failure cascades driven by the redistribution of load following local failure events. We use the fiber bundle model of materials’ breakdown assigning fibers to the sites of a square lattice, which is then randomly rewired using the Watts–Strogatz technique. Gradually increasing the rewiring probability, we demonstrate that the bundle undergoes a transition from the localized to the mean field universality class of breakdown phenomena. Computer simulations revealed that both the size and the duration of failure cascades are power law distributed on all network topologies with a crossover between two regimes of different exponents. The temporal evolution of cascades is described by a parabolic profile with a right handed asymmetry, which implies that cascades start slowly, then accelerate, and eventually stop suddenly. The degree of asymmetry proved to be characteristic of the network topology gradually decreasing with increasing rewiring probability. Reducing the variance of fibers’ strength, the exponents of the size and the duration distribution of cascades increase in the localized regime of the failure process, while the localized to mean field transition becomes more abrupt. The consistency of the results is supported by a scaling analysis relating the characteristic exponents of the statistics and dynamics of cascades.

1.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
(
2006
).
2.
I.
Dobson
,
B. A.
Carreras
,
V. E.
Lynch
, and
D. E.
Newman
, “
Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization
,”
Chaos
17
,
026103
(
2007
).
3.
Y.
Moreno
,
J. B.
Gómez
, and
A. F.
Pacheco
, “
Instability of scale-free networks under node-breaking avalanches
,”
Europhys. Lett.
58
,
630
636
(
2002
).
4.
D.
Trpevski
,
W. K. S.
Tang
, and
L.
Kocarev
, “
Model for rumor spreading over networks
,”
Phys. Rev. E
81
,
056102
(
2010
).
5.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
6.
M. E. J.
Newman
, “
Spread of epidemic disease on networks
,”
Phys. Rev. E
66
,
016128
(
2002
).
7.
M.
Barthélemy
, “
Spatial networks
,”
Phys. Rep.
499
,
1
101
(
2011
).
8.
I.
Dobson
, “
Estimating the propagation and extent of cascading line outages from utility data with a branching process
,”
IEEE Trans. Power Syst.
27
,
2146
2155
(
2012
).
9.
J.
Gleeson
and
R.
Durrett
, “
Temporal profiles of avalanches on networks
,”
Nat. Commun.
8
,
3
(
2017
).
10.
N.
Jung
,
Q. A.
Le
,
K.-E.
Lee
, and
J. W.
Lee
, “
Avalanche size distribution of an integrate-and-fire neural model on complex networks
,”
Chaos
30
,
063118
(
2020
).
11.
B.
Casals
and
E. K. H.
Salje
, “
Energy exponents of avalanches and Hausdorff dimensions of collapse patterns
,”
Phys. Rev. E
104
,
054138
(
2021
).
12.
M.
Stojanova
,
S.
Santucci
,
L.
Vanel
, and
O.
Ramos
, “
High frequency monitoring reveals aftershocks in subcritical crack growth
,”
Phys. Rev. Lett.
112
,
115502
(
2014
).
13.
Z.
Danku
and
F.
Kun
, “
Temporal and spacial evolution of bursts in creep rupture
,”
Phys. Rev. Lett.
111
,
084302
(
2013
).
14.
J.
Rosti
,
X.
Illa
,
J.
Koivisto
, and
M. J.
Alava
, “
Crackling noise and its dynamics in fracture of disordered media
,”
J. Phys. D: Appl. Phys.
42
,
214013
(
2009
).
15.
J. P.
Sethna
,
K. A.
Dahmen
, and
C. R.
Meyers
, “
Crackling noise
,”
Nature
410
,
242
(
2001
).
16.
P.
Massobrio
,
L.
de Arcangelis
,
V.
Pasquale
,
H. J.
Jensen
, and
D.
Plenz
, “
Criticality as a signature of healthy neural systems
,”
Front. Syst. Neurosci.
9
,
00022
(
2015
).
17.
S.
Papanikolaou
,
F.
Bohn
,
R. L.
Sommer
,
G.
Durin
,
S.
Zapperi
, and
J. P.
Sethna
, “
Universality beyond power laws and the average avalanche shape
,”
Nat. Phys.
7
,
316
320
(
2011
).
18.
L.
Laurson
,
X.
Illa
,
S.
Santucci
,
K.
Tore Tallakstad
,
K. J.
Maloy
, and
M. J.
Alava
, “
Evolution of the average avalanche shape with the universality class
,”
Nat. Commun.
4
,
242
(
2013
).
19.
S.
Zapperi
,
C.
Castellano
,
F.
Colaiori
, and
G.
Durin
, “
Signature of effective mass in crackling-noise asymmetry
,”
Nature Phys.
1
,
46
49
(
2005
).
20.
F.
Colaiori
, “
Exactly solvable model of avalanches dynamics for Barkhausen crackling noise
,”
Adv. Phys.
57
,
287
359
(
2008
).
21.
F.
Colaiori
,
S.
Zapperi
, and
G.
Durin
, “
Shape of a Barkhausen pulse
,”
J. Magn. Magn. Mater.
272–276
,
E533
E534
(
2004
).
22.
B.
Dou
,
X.
Wang
, and
S.
Zhang
, “
Robustness of networks against cascading failures
,”
Physica A
389
,
2310
2317
(
2010
).
23.
J.
Borge-Holthoefer
,
R. A.
Baños
,
S.
González-Bailón
, and
Y.
Moreno
, “
Cascading behaviour in complex socio-technical networks
,”
J. Complex Netw.
1
,
3
24
(
2013
).
24.
S.
Siddique
and
V.
Volovoi
, “
Failure mechanisms of load-sharing complex systems
,”
Phys. Rev. E
89
,
012816
(
2014
).
25.
J.
Awrejcewicz
and
M. A. F.
Sanjuán
, “
Introduction to focus issue: Recent advances in modeling complex systems: Theory and applications
,”
Chaos
31
,
070401
(
2021
).
26.
D. V.
Stäger
,
N. A. M.
Araújo
, and
H. J.
Herrmann
, “
Usage leading to an abrupt collapse of connectivity
,”
Phys. Rev. E
90
,
042148
(
2014
).
27.
R. C.
Hidalgo
,
F.
Kun
,
K.
Kovács
, and
I.
Pagonabarraga
, “
Avalanche dynamics of fiber bundle models
,”
Phys. Rev. E
80
,
051108
(
2009
).
28.
A.
Hansen
,
P.
Hemmer
, and
S.
Pradhan
, The Fiber Bundle Model: Modeling Failure in Materials, Statistical Physics of Fracture and Breakdown (Wiley, 2015).
29.
B. K.
Chakrabarti
,
S.
Biswas
, and
S.
Pradhan
, “
Cooperative dynamics in the fiber bundle model
,”
Front. Phys.
8
,
499
(
2021
).
30.
F.
Kun
,
F.
Raischel
,
R. C.
Hidalgo
, and
H. J.
Herrmann
, “Extensions of fiber bundle models,” in Modelling Critical and Catastrophic Phenomena in Geoscience: A Statistical Physics Approach, Lecture Notes in Physics, edited by P. Bhattacharyya and B. K. Chakrabarti (Springer-Verlag, Berlin, 2006), pp. 57–92.
31.
D.-H.
Kim
,
B. J.
Kim
, and
H.
Jeong
,
Universality class of the fiber bundle model on complex networks
,”
Phys. Rev. Lett.
94
,
025501
(
2005
).
32.
U.
Divakaran
and
A.
Dutta
, “
Fibers on a graph with local load sharing
,”
Int. J. Mod. Phys. C
18
,
919
(
2011
).
33.
Z.
Domanski
, “
Spreading of failures in small-world networks: A connectivity-dependent load sharing fibre bundle model
,”
Front. Phys.
8
,
441
(
2020
).
34.
O.
Yağan
, “
Robustness of power systems under a democratic-fiber-bundle-like model
,”
Phys. Rev. E
91
,
062811
(
2015
).
35.
J. M.
Reynolds-Barredo
,
D. E.
Newman
,
B. A.
Carreras
, and
I.
Dobson
, “
The interplay of network structure and dispatch solutions in power grid cascading failures
,”
Chaos
26
,
113111
(
2016
).
36.
S.
Biswas
and
L.
Goehring
, “
Load dependence of power outage statistics
,”
Europhys. Lett.
126
,
44002
(
2019
).
37.
C.
Barré
and
J.
Talbot
, “
Cascading blockages in channel bundles
,”
Phys. Rev. E
92
,
052141
(
2015
).
38.
B. K.
Chakrabarti
, “
A fiber bundle model of traffic jams
,”
Physica A
372
,
162
166
(
2006
).
39.
J.-F.
Zheng
,
Z.-Y.
Gao
,
X.-M.
Zhao
, and
B.-B.
Fu
, “
Extended fiber bundle model for traffic jams on scale-free networks
,”
Int. J. Mod. Phys. C
19
,
1727
1735
(
2011
).
40.
D.
Watts
and
S.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
41.
D. J.
Watts
, “
Networks, dynamics, and the small-world phenomenon
,”
Am. J. Sociol.
105
,
493
527
(
1999
).
42.
V.
Latora
,
V.
Nicosia
, and
G.
Russo
,
Complex Networks—Principles, Methods and Applications
(
Cambridge University Press
,
Cambridge
,
2017
).
43.
R. C.
Hidalgo
,
Y.
Moreno
,
F.
Kun
, and
H. J.
Herrmann
, “
Fracture model with variable range of interaction
,”
Phys. Rev. E
65
,
046148
(
2002
).
44.
F.
Raischel
,
F.
Kun
, and
H. J.
Herrmann
, “
Local load sharing fiber bundles with a lower cutoff of strength disorder
,”
Phys. Rev. E
74
,
035104
(
2006
).
45.
Y.
Moreno
,
J. B.
Gomez
, and
A. F.
Pacheco
, “
Fracture and second-order phase transitions
,”
Phys. Rev. Lett.
85
,
2865
2868
(
2000
).
46.
F.
Kun
,
S.
Zapperi
, and
H. J.
Herrmann
, “
Damage in fiber bundle models
,”
Eur. Phys. J. B
17
,
269
(
2000
).
47.
A.
Batool
,
G.
Pal
,
Z.
Danku
, and
F.
Kun
, “Transition from localized to mean field behaviour of cascading failures in the fiber bundle model on complex networks,” arXiv:2202.08364 [cond-mat.dis-nn] (2022).
48.
G.
Durin
and
S.
Zapperi
, “
Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets
,”
Phys. Rev. Lett.
84
,
4705
(
2000
).
49.
Z.
Danku
,
G.
Ódor
, and
F.
Kun
, “
Avalanche dynamics in higher-dimensional fiber bundle models
,”
Phys. Rev. E
98
,
042126
(
2018
).
50.
M. E. J.
Newman
,
Networks: An Introduction
(
Oxford University Press
,
Oxford
,
2010
).
51.
A.
Baldassarri
,
F.
Colaiori
, and
C.
Castellano
, “
Average shape of a fluctuation: Universality in excursions of stochastic processes
,”
Phys. Rev. Lett.
90
,
060601
(
2003
).
You do not currently have access to this content.