Active soft materials exhibit various dynamics ranging from boat pulsation to thin membrane deformation. In the present work, in situ prepared ethanol-containing chitosan gels propel in continuous and intermittent motion. The active life of the organic material loaded to the constant fuel level follows a linear scaling, and its maximal velocity and projection area decrease steeply with chitosan concentration. A thin propelling platelet forms at low polymer content, leading to the suppression of intermittent motion. Moreover, the fast accelerating thin gels can split into a crescent and circular-like shape or fission into multiple asymmetric fragments.

1.
V.
Pimienta
and
C.
Antoine
, “
Self-propulsion on liquid surfaces
,”
Curr. Opin. Colloid Interface Sci.
19
,
290
299
(
2014
).
2.
T.
Mitsumata
,
K.
Ikeda
,
J. P.
Gong
, and
Y.
Osada
, “
Solvent-driven chemical motor
,”
Appl. Phys. Lett.
73
,
2366
2368
(
1998
).
3.
Y.
Xu
,
N.
Takayama
,
H.
Er
, and
S.
Nakata
, “
Oscillatory motion of a camphor object on a surfactant solution
,”
J. Phys. Chem. B
125
,
1674
1679
(
2021
).
4.
S.
Nakata
,
M.
Yoshii
,
Y.
Matsuda
, and
N.
Suematsu
, “
Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment
,”
Chaos
25
,
064610
(
2015
).
5.
J.
Sharma
,
I.
Tiwari
,
D.
Das
,
P.
Parmananda
,
V. S.
Akella
, and
V.
Pimienta
, “
Rotational synchronization of camphor ribbons
,”
Phys. Rev. E
99
,
012204
(
2019
).
6.
M. C.
Hoang
,
K. T.
Nguyen
,
V. H.
Le
,
J.
Kim
,
E.
Choi
,
B.
Kang
,
J.-O.
Park
, and
C.-S.
Kim
, “
Independent electromagnetic field control for practical approach to actively locomotive wireless capsule endoscope
,”
IEEE Trans. Syst. Man Cybern.: Syst.
51
,
3040
3052
(
2021
).
7.
O. D.
Velev
,
B. G.
Prevo
, and
K. H.
Bhatt
, “
On-chip manipulation of free droplets
,”
Nature
426
,
515
516
(
2003
).
8.
G.
Loget
and
A.
Kuhn
, “
Propulsion of microobjects by dynamic bipolar self-regeneration
,”
J. Am. Chem. Soc.
132
,
15918
15919
(
2010
).
9.
S. T.
Chang
,
V. N.
Paunov
,
D. N.
Petsev
, and
O. D.
Velev
, “
Remotely powered self-propelling particles and micropumps based on miniature diodes
,”
Nat. Mater.
6
,
235
240
(
2007
).
10.
A.
Yucknovsky
,
B. B.
Rich
,
A.
Westfried
,
B.
Pokroy
, and
N.
Amdursky
, “
Self-propulsion of droplets via light-stimuli rapid control of their surface tension
,”
Adv. Mater. Interfaces
8
,
2100751
(
2021
).
11.
M.
Ibele
,
T. E.
Mallouk
, and
A.
Sen
, “
Schooling behavior of light-powered autonomous micromotors in water
,”
Angew. Chem.
121
,
3358
3362
(
2009
).
12.
W.
Duan
,
R.
Liu
, and
A.
Sen
, “
Transition between collective behaviors of micromotors in response to different stimuli
,”
J. Am. Chem. Soc.
135
,
1280
1283
(
2013
).
13.
Y.
Sumino
,
N.
Magome
,
T.
Hamada
, and
K.
Yoshikawa
, “
Self-running droplet: Emergence of regular motion from nonequilibrium noise
,”
Phys. Rev. Lett.
94
,
068301
(
2005
).
14.
N. J.
Suematsu
,
Y.
Miyahara
,
Y.
Matsuda
, and
S.
Nakata
, “
Self-motion of a benzoquinone disk coupled with a redox reaction
,”
J. Phys. Chem. C
114
,
13340
13343
(
2010
).
15.
S.
Nakata
,
M.
Nomura
,
H.
Yamamoto
,
S.
Izumi
,
N. J.
Suematsu
,
Y.
Ikura
, and
T.
Amemiya
, “
Periodic oscillatory motion of a self-propelled motor driven by decomposition of H2O2 by catalase
,”
Angew. Chem.
129
,
879
882
(
2017
).
16.
Q.
Wang
,
P.
Knoll
, and
O.
Steinbock
, “
Self-propelled chemical garden tubes
,”
J. Phys. Chem. B
125
,
13908
13915
(
2021
).
17.
N. J.
Suematsu
,
T.
Sasaki
,
S.
Nakata
, and
H.
Kitahata
, “
Quantitative estimation of the parameters for self-motion driven by difference in surface tension
,”
Langmuir
30
,
8101
8108
(
2014
).
18.
D.
Kagan
,
R.
Laocharoensuk
,
M.
Zimmerman
,
C.
Clawson
,
S.
Balasubramanian
,
D.
Kang
,
D.
Bishop
,
S.
Sattayasamitsathit
,
L.
Zhang
, and
J.
Wang
, “
Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles
,”
Small
6
,
2741
2747
(
2010
).
19.
V.
Chan
,
H. H.
Asada
, and
R.
Bashir
, “
Utilization and control of bioactuators across multiple length scales
,”
Lab Chip
14
,
653
670
(
2014
).
20.
Y.
Zhang
,
K.
Yuan
, and
L.
Zhang
, “
Micro/nanomachines: From functionalization to sensing and removal
,”
Adv. Mater. Technol.
4
,
1800636
(
2019
).
21.
M.
Zarei
and
M.
Zarei
, “
Self-propelled micro/nanomotors for sensing and environmental remediation
,”
Small
14
,
1800912
(
2018
).
22.
I.
Tiwari
,
P.
Parmananda
, and
R.
Chelakkot
, “
Periodic oscillations in a string of camphor infused disks
,”
Soft Matter
16
,
10334
10344
(
2020
).
23.
R.
Fujita
,
M.
Matsuo
, and
S.
Nakata
, “
Multidimensional self-propelled motion based on nonlinear science
,”
Front. Phys.
10
,
3211
(
2022
).
24.
T.
Mitsumata
,
J. P.
Gong
, and
Y.
Osada
, “
Shape memory functions and motility of amphiphilic polymer gels
,”
Polym. Adv. Technol.
12
,
136
150
(
2001
).
25.
R.
Sharma
,
S. T.
Chang
, and
O. D.
Velev
, “
Gel-based self-propelling particles get programmed to dance
,”
Langmuir
28
,
10128
10135
(
2012
).
26.
N.
Bassik
,
B. T.
Abebe
, and
D. H.
Gracias
, “
Solvent driven motion of lithographically fabricated gels
,”
Langmuir
24
,
12158
12163
(
2008
).
27.
L.
Keiser
,
H.
Bense
,
P.
Colinet
,
J.
Bico
, and
E.
Reyssat
, “
Marangoni bursting: Evaporation-induced emulsification of binary mixtures on a liquid layer
,”
Phys. Rev. Lett.
118
,
074504
(
2017
).
28.
K. H.
Nagai
,
K.
Tachibana
,
Y.
Tobe
,
M.
Kazama
,
H.
Kitahata
,
S.
Omata
, and
M.
Nagayama
, “
Mathematical model for self-propelled droplets driven by interfacial tension
,”
J. Chem. Phys.
144
,
114707
(
2016
).
29.
V.
Pimienta
,
M.
Brost
,
N.
Kovalchuk
,
S.
Bresch
, and
O.
Steinbock
, “
Complex shapes and dynamics of dissolving drops of dichloromethane
,”
Angew. Chem. Int. Ed.
50
,
10728
10731
(
2011
).
30.
K.
Nagai
,
Y.
Sumino
,
H.
Kitahata
, and
K.
Yoshikawa
, “
Mode selection in the spontaneous motion of an alcohol droplet
,”
Phys. Rev. E
71
,
065301
(
2005
).
31.
A.
Nikolov
,
D.
Wasan
, and
J.
Lee
, “
Tears of wine: The dance of the droplets
,”
Adv. Colloid Interface Sci.
256
,
94
100
(
2018
).
32.
C.
Spandagos
,
T. B.
Goudoulas
,
P. F.
Luckham
, and
O. K.
Matar
, “
Surface tension-induced gel fracture. Part 1. Fracture of agar gels
,”
Langmuir
28
,
7197
7211
(
2012
).
33.
M.
Okada
,
Y.
Sumino
,
H.
Ito
, and
H.
Kitahata
, “
Spontaneous deformation and fission of oil droplets on an aqueous surfactant solution
,”
Phys. Rev. E
102
,
042603
(
2020
).
34.
Y.
Sumino
,
H.
Kitahata
,
H.
Seto
, and
K.
Yoshikawa
, “
Blebbing dynamics in an oil-water-surfactant system through the generation and destruction of a gel-like structure
,”
Phys. Rev. E
76
,
055202
(
2007
).
35.
Y.
Sumino
,
H.
Kitahata
,
Y.
Shinohara
,
N. L.
Yamada
, and
H.
Seto
, “
Formation of a multiscale aggregate structure through spontaneous blebbing of an interface
,”
Langmuir
28
,
3378
3384
(
2012
).
36.
Y.
Sumino
,
H.
Kitahata
,
H.
Seto
, and
K.
Yoshikawa
, “
Dynamical blebbing at a droplet interface driven by instability in elastic stress: A novel self-motile system
,”
Soft Matter
7
,
3204
3212
(
2011
).
37.
V. S.
Akella
,
D. K.
Singh
,
S.
Mandre
, and
M. M.
Bandi
, “
Dynamics of a camphoric acid boat at the air–water interface
,”
Phys. Lett. A
382
,
1176
1180
(
2018
).
38.
J.
Nie
,
W.
Lu
,
J.
Ma
,
L.
Yang
,
Z.
Wang
,
A.
Qin
, and
Q.
Hu
, “
Orientation in multi-layer chitosan hydrogel: Morphology, mechanism and design principle
,”
Sci. Rep.
5
,
7635
(
2015
).
39.
P.
Kumar
,
D.
Sebők
,
Á.
Kukovecz
,
D.
Horváth
, and
Á.
Tóth
, “
Hierarchical self-assembly of metal-ion-modulated chitosan tubules
,”
Langmuir
37
,
12690
12696
(
2021
).

Supplementary Material

You do not currently have access to this content.