Active soft materials exhibit various dynamics ranging from boat pulsation to thin membrane deformation. In the present work, in situ prepared ethanol-containing chitosan gels propel in continuous and intermittent motion. The active life of the organic material loaded to the constant fuel level follows a linear scaling, and its maximal velocity and projection area decrease steeply with chitosan concentration. A thin propelling platelet forms at low polymer content, leading to the suppression of intermittent motion. Moreover, the fast accelerating thin gels can split into a crescent and circular-like shape or fission into multiple asymmetric fragments.
REFERENCES
1.
V.
Pimienta
and C.
Antoine
, “Self-propulsion on liquid surfaces
,” Curr. Opin. Colloid Interface Sci.
19
, 290
–299
(2014
). 2.
T.
Mitsumata
, K.
Ikeda
, J. P.
Gong
, and Y.
Osada
, “Solvent-driven chemical motor
,” Appl. Phys. Lett.
73
, 2366
–2368
(1998
). 3.
Y.
Xu
, N.
Takayama
, H.
Er
, and S.
Nakata
, “Oscillatory motion of a camphor object on a surfactant solution
,” J. Phys. Chem. B
125
, 1674
–1679
(2021
). 4.
S.
Nakata
, M.
Yoshii
, Y.
Matsuda
, and N.
Suematsu
, “Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment
,” Chaos
25
, 064610
(2015
). 5.
J.
Sharma
, I.
Tiwari
, D.
Das
, P.
Parmananda
, V. S.
Akella
, and V.
Pimienta
, “Rotational synchronization of camphor ribbons
,” Phys. Rev. E
99
, 012204
(2019
). 6.
M. C.
Hoang
, K. T.
Nguyen
, V. H.
Le
, J.
Kim
, E.
Choi
, B.
Kang
, J.-O.
Park
, and C.-S.
Kim
, “Independent electromagnetic field control for practical approach to actively locomotive wireless capsule endoscope
,” IEEE Trans. Syst. Man Cybern.: Syst.
51
, 3040
–3052
(2021
). 7.
O. D.
Velev
, B. G.
Prevo
, and K. H.
Bhatt
, “On-chip manipulation of free droplets
,” Nature
426
, 515
–516
(2003
). 8.
G.
Loget
and A.
Kuhn
, “Propulsion of microobjects by dynamic bipolar self-regeneration
,” J. Am. Chem. Soc.
132
, 15918
–15919
(2010
). 9.
S. T.
Chang
, V. N.
Paunov
, D. N.
Petsev
, and O. D.
Velev
, “Remotely powered self-propelling particles and micropumps based on miniature diodes
,” Nat. Mater.
6
, 235
–240
(2007
). 10.
A.
Yucknovsky
, B. B.
Rich
, A.
Westfried
, B.
Pokroy
, and N.
Amdursky
, “Self-propulsion of droplets via light-stimuli rapid control of their surface tension
,” Adv. Mater. Interfaces
8
, 2100751
(2021
). 11.
M.
Ibele
, T. E.
Mallouk
, and A.
Sen
, “Schooling behavior of light-powered autonomous micromotors in water
,” Angew. Chem.
121
, 3358
–3362
(2009
). 12.
W.
Duan
, R.
Liu
, and A.
Sen
, “Transition between collective behaviors of micromotors in response to different stimuli
,” J. Am. Chem. Soc.
135
, 1280
–1283
(2013
). 13.
Y.
Sumino
, N.
Magome
, T.
Hamada
, and K.
Yoshikawa
, “Self-running droplet: Emergence of regular motion from nonequilibrium noise
,” Phys. Rev. Lett.
94
, 068301
(2005
). 14.
N. J.
Suematsu
, Y.
Miyahara
, Y.
Matsuda
, and S.
Nakata
, “Self-motion of a benzoquinone disk coupled with a redox reaction
,” J. Phys. Chem. C
114
, 13340
–13343
(2010
). 15.
S.
Nakata
, M.
Nomura
, H.
Yamamoto
, S.
Izumi
, N. J.
Suematsu
, Y.
Ikura
, and T.
Amemiya
, “Periodic oscillatory motion of a self-propelled motor driven by decomposition of by catalase
,” Angew. Chem.
129
, 879
–882
(2017
). 16.
Q.
Wang
, P.
Knoll
, and O.
Steinbock
, “Self-propelled chemical garden tubes
,” J. Phys. Chem. B
125
, 13908
–13915
(2021
). 17.
N. J.
Suematsu
, T.
Sasaki
, S.
Nakata
, and H.
Kitahata
, “Quantitative estimation of the parameters for self-motion driven by difference in surface tension
,” Langmuir
30
, 8101
–8108
(2014
). 18.
D.
Kagan
, R.
Laocharoensuk
, M.
Zimmerman
, C.
Clawson
, S.
Balasubramanian
, D.
Kang
, D.
Bishop
, S.
Sattayasamitsathit
, L.
Zhang
, and J.
Wang
, “Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles
,” Small
6
, 2741
–2747
(2010
). 19.
V.
Chan
, H. H.
Asada
, and R.
Bashir
, “Utilization and control of bioactuators across multiple length scales
,” Lab Chip
14
, 653
–670
(2014
). 20.
Y.
Zhang
, K.
Yuan
, and L.
Zhang
, “Micro/nanomachines: From functionalization to sensing and removal
,” Adv. Mater. Technol.
4
, 1800636
(2019
). 21.
M.
Zarei
and M.
Zarei
, “Self-propelled micro/nanomotors for sensing and environmental remediation
,” Small
14
, 1800912
(2018
). 22.
I.
Tiwari
, P.
Parmananda
, and R.
Chelakkot
, “Periodic oscillations in a string of camphor infused disks
,” Soft Matter
16
, 10334
–10344
(2020
). 23.
R.
Fujita
, M.
Matsuo
, and S.
Nakata
, “Multidimensional self-propelled motion based on nonlinear science
,” Front. Phys.
10
, 3211
(2022
). 24.
T.
Mitsumata
, J. P.
Gong
, and Y.
Osada
, “Shape memory functions and motility of amphiphilic polymer gels
,” Polym. Adv. Technol.
12
, 136
–150
(2001
). 25.
R.
Sharma
, S. T.
Chang
, and O. D.
Velev
, “Gel-based self-propelling particles get programmed to dance
,” Langmuir
28
, 10128
–10135
(2012
). 26.
N.
Bassik
, B. T.
Abebe
, and D. H.
Gracias
, “Solvent driven motion of lithographically fabricated gels
,” Langmuir
24
, 12158
–12163
(2008
). 27.
L.
Keiser
, H.
Bense
, P.
Colinet
, J.
Bico
, and E.
Reyssat
, “Marangoni bursting: Evaporation-induced emulsification of binary mixtures on a liquid layer
,” Phys. Rev. Lett.
118
, 074504
(2017
). 28.
K. H.
Nagai
, K.
Tachibana
, Y.
Tobe
, M.
Kazama
, H.
Kitahata
, S.
Omata
, and M.
Nagayama
, “Mathematical model for self-propelled droplets driven by interfacial tension
,” J. Chem. Phys.
144
, 114707
(2016
). 29.
V.
Pimienta
, M.
Brost
, N.
Kovalchuk
, S.
Bresch
, and O.
Steinbock
, “Complex shapes and dynamics of dissolving drops of dichloromethane
,” Angew. Chem. Int. Ed.
50
, 10728
–10731
(2011
). 30.
K.
Nagai
, Y.
Sumino
, H.
Kitahata
, and K.
Yoshikawa
, “Mode selection in the spontaneous motion of an alcohol droplet
,” Phys. Rev. E
71
, 065301
(2005
). 31.
A.
Nikolov
, D.
Wasan
, and J.
Lee
, “Tears of wine: The dance of the droplets
,” Adv. Colloid Interface Sci.
256
, 94
–100
(2018
). 32.
C.
Spandagos
, T. B.
Goudoulas
, P. F.
Luckham
, and O. K.
Matar
, “Surface tension-induced gel fracture. Part 1. Fracture of agar gels
,” Langmuir
28
, 7197
–7211
(2012
). 33.
M.
Okada
, Y.
Sumino
, H.
Ito
, and H.
Kitahata
, “Spontaneous deformation and fission of oil droplets on an aqueous surfactant solution
,” Phys. Rev. E
102
, 042603
(2020
). 34.
Y.
Sumino
, H.
Kitahata
, H.
Seto
, and K.
Yoshikawa
, “Blebbing dynamics in an oil-water-surfactant system through the generation and destruction of a gel-like structure
,” Phys. Rev. E
76
, 055202
(2007
). 35.
Y.
Sumino
, H.
Kitahata
, Y.
Shinohara
, N. L.
Yamada
, and H.
Seto
, “Formation of a multiscale aggregate structure through spontaneous blebbing of an interface
,” Langmuir
28
, 3378
–3384
(2012
). 36.
Y.
Sumino
, H.
Kitahata
, H.
Seto
, and K.
Yoshikawa
, “Dynamical blebbing at a droplet interface driven by instability in elastic stress: A novel self-motile system
,” Soft Matter
7
, 3204
–3212
(2011
). 37.
V. S.
Akella
, D. K.
Singh
, S.
Mandre
, and M. M.
Bandi
, “Dynamics of a camphoric acid boat at the air–water interface
,” Phys. Lett. A
382
, 1176
–1180
(2018
). 38.
J.
Nie
, W.
Lu
, J.
Ma
, L.
Yang
, Z.
Wang
, A.
Qin
, and Q.
Hu
, “Orientation in multi-layer chitosan hydrogel: Morphology, mechanism and design principle
,” Sci. Rep.
5
, 7635
(2015
).39.
P.
Kumar
, D.
Sebők
, Á.
Kukovecz
, D.
Horváth
, and Á.
Tóth
, “Hierarchical self-assembly of metal-ion-modulated chitosan tubules
,” Langmuir
37
, 12690
–12696
(2021
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.