This paper presents analyses of networks composed of homogeneous Stuart–Landau oscillators with symmetric linear coupling and dynamical Gaussian noise. With a simple mean-field approximation, the original system is transformed into a surrogate system that describes uncorrelated oscillation/fluctuation modes of the original system. The steady-state probability distribution for these modes is described using an exponential family, and the dynamics of the system are mainly determined by the eigenvalue spectrum of the coupling matrix and the noise level. The variances of the modes can be expressed as functions of the eigenvalues and noise level, yielding the relation between the covariance matrix and the coupling matrix of the oscillators. With decreasing noise, the leading mode changes from fluctuation to oscillation, generating apparent synchrony of the coupled oscillators, and the condition for such a transition is derived. Finally, the approximate analyses are examined via numerical simulation of the oscillator networks with weak coupling to verify the utility of the approximation in outlining the basic properties of the considered coupled oscillator networks. These results are potentially useful for the modeling and analysis of indirectly measured data of neurodynamics, e.g., via functional magnetic resonance imaging and electroencephalography, as a counterpart of the frequently used Ising model.

1.
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
, 1st ed. (
Hyperion Books
,
New York
,
2003
).
2.
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
, “
Spontaneous synchrony in power-grid networks
,”
Nat. Phys.
9
,
191
197
(
2013
).
3.
I.
Aihara
,
T.
Mizumoto
,
T.
Otsuka
,
H.
Awano
,
K.
Nagira
,
H. G.
Okuno
, and
K.
Aihara
, “
Spatio-temporal dynamics in collective frog choruses examined by mathematical modeling and field observations
,”
Sci. Rep.
4
,
3891
(
2014
).
4.
Z.
Néda
,
E.
Ravasz
,
T.
Vicsek
,
Y.
Brechet
, and
A. L.
Barabási
, “
Physics of the rhythmic applause
,”
Phys. Rev. E
61
,
6987
6992
(
2000
).
5.
Y.
Kuramoto
, “
Self-entrainment of a population of coupled non-linear oscillators
,” in
International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, 1975
,
Lecture Notes in Physics Vol. 39, edited by H. Araki
(
Springer
,
Berlin
,
1975
) pp.
420
422
.
6.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
7.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
8.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
253
(
1994
).
9.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
10.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
11.
H.
Hong
, “
Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength
,”
Phys. Rev. E
96
,
012213
(
2017
).
12.
M.
Breakspear
,
S.
Heitmann
, and
A.
Daffertshofer
, “
Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model
,”
Front. Hum. Neurosci.
4
,
190
(
2010
).
13.
G.
Saxena
,
A.
Prasad
, and
R.
Ramaswamy
, “
Amplitude death: The emergence of stationarity in coupled nonlinear systems
,”
Phys. Rep.
521
,
205
228
(
2012
).
14.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
, “
Oscillation quenching mechanisms: Amplitude vs. oscillation death
,”
Phys. Rep.
531
,
173
199
(
2013
).
15.
H.
Daido
and
K.
Nakanishi
, “
Aging transition and universal scaling in oscillator networks
,”
Phys. Rev. Lett.
93
,
104101
(
2004
).
16.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Amplitude death in an array of limit-cycle oscillators
,”
J. Stat. Phys.
60
,
245
262
(
1990
).
17.
W.
Zou
,
M.
Zhan
, and
J.
Kurths
, “
Amplitude death in globally coupled oscillators with time-scale diversity
,”
Phys. Rev. E
98
,
062209
(
2018
).
18.
D. V.
Ramana Reddy
,
A.
Sen
, and
G. L.
Johnston
, “
Time delay induced death in coupled limit cycle oscillators
,”
Phys. Rev. Lett.
80
,
5109
5112
(
1998
).
19.
W.
Zou
and
M.
Zhan
, “
Partial time-delay coupling enlarges death island of coupled oscillators
,”
Phys. Rev. E
80
,
065204(R)
(
2009
).
20.
N. K.
Kamal
,
P. R.
Sharma
, and
M. D.
Shrimali
, “
Oscillation suppression in indirectly coupled limit cycle oscillators
,”
Phys. Rev. E
92
,
022928
(
2015
).
21.
W.
Zou
,
D. V.
Senthilkumar
,
A.
Koseska
, and
J.
Kurths
, “
Generalizing the transition from amplitude to oscillation death in coupled oscillators
,”
Phys. Rev. E
88
,
050901(R)
(
2013
).
22.
G.
Tanaka
,
K.
Morino
,
H.
Daido
, and
K.
Aihara
, “
Dynamical robustness of coupled heterogeneous oscillators
,”
Phys. Rev. E
89
,
052906
(
2014
).
23.
T.
Yuan
and
G.
Tanaka
, “
Robustness of coupled oscillator networks with heterogeneous natural frequencies
,”
Chaos
27
,
123105
(
2017
).
24.
A.
Ray
,
S.
Kundu
, and
D.
Ghosh
, “
Aging transition in weighted homogeneous and heterogeneous networks
,”
Europhys. Lett.
128
,
40002
(
2019
).
25.
W.
Zou
,
D. V.
Senthilkumar
,
M.
Zhan
, and
J.
Kurths
, “
Quenching, aging, and reviving in coupled dynamical networks
,”
Phys. Rep.
931
,
1
72
(
2021
).
26.
M. D.
Greicius
,
B.
Krasnow
,
A. L.
Reiss
, and
V.
Menon
, “
Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
253
258
(
2003
).
27.
K. J.
Friston
, “
Functional and effective connectivity: A review
,”
Brain Connect.
1
,
13
36
(
2011
).
28.
G.
Deco
,
M. L.
Kringelbach
,
V. K.
Jirsa
, and
P.
Ritter
, “
The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core
,”
Sci. Rep.
7
,
3095
(
2017
).
29.
J.-Y.
Moon
,
U.-C.
Lee
,
S.
Blain-Moraes
, and
G. A.
Mashour
, “
General relationship of global topology, local dynamics, and directionality in large-scale brain networks
,”
PLoS Comput. Biol.
11
,
e1004225
(
2015
).
30.
M.
Demirtaş
,
C.
Falcon
,
A.
Tucholka
,
J. D.
Gispert
,
J. L.
Molinuevo
, and
G.
Deco
, “
A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer’s disease
,”
Neuroimage Clin.
16
,
343
354
(
2017
).
31.
E.
Schneidman
,
M. J.
Berry II
,
R.
Segev
, and
W.
Bialek
, “
Weak pairwise correlations imply strongly correlated network states in a neural population
,”
Nature
440
,
1007
1012
(
2006
).
32.
T.
Tanaka
, “
Mean-field theory of Boltzmann machine learning
,”
Phys. Rev. E
58
,
2302
2310
(
1998
).
33.
Y.
Roudi
,
J.
Tyrcha
, and
J.
Hertz
, “
Ising model for neural data: Model quality and approximate methods for extracting functional connectivity
,”
Phys. Rev. E
79
,
051915
(
2009
).
34.
T.
Watanabe
,
S.
Hirose
,
H.
Wada
,
Y.
Imai
,
T.
Machida
,
I.
Shirouzu
,
S.
Konishi
,
Y.
Miyashita
, and
N.
Masuda
, “
A pairwise maximum entropy model accurately describes resting-state human brain networks
,”
Nat. Commun.
4
,
1370
(
2013
).
35.
T.
Watanabe
,
S.
Hirose
,
H.
Wada
,
Y.
Imai
,
T.
Machida
,
I.
Shirouzu
,
S.
Konishi
,
Y.
Miyashita
, and
N.
Masuda
, “
Energy landscapes of resting-state brain networks
,”
Front. Neuroinform.
8
,
12
(
2014
).
36.
F.
Dörfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
,
1539
1564
(
2014
).
37.
G.
Marsaglia
, “
Evaluating the normal distribution
,”
J. Stat. Softw.
11
,
4
(
2004
).
38.
J. A.
Hartigan
and
P. M.
Hartigan
, “
The dip test of unimodality
,”
Ann. Statist.
13
,
70
84
(
1985
).
39.
B.
Doran
(2018). “Unidip,” GitHub repository, https://github.com/BenjaminDoran/unidip.
40.
P. C.
Matthews
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Dynamics of a large system of coupled nonlinear oscillators
,”
Physica D
52
,
293
331
(
1991
).
41.
C.
Mortici
, “
Completely monotone functions and the Wallis ratio
,”
Appl. Math. Lett.
25
,
717
722
(
2012
).
You do not currently have access to this content.