Previous studies on network robustness mainly concentrated on hub node failures with fully known network structure information. However, hub nodes are often well protected and not accessible to damage or malfunction in a real-world networked system. In addition, one can only gain insight into limited network connectivity knowledge due to large-scale properties and dynamic changes of the network itself. In particular, two different aggression patterns are present in a network attack: memory based attack, in which failed nodes are not attacked again, or non-memory based attack; that is, nodes can be repeatedly attacked. Inspired by these motivations, we propose an attack pattern with and without memory based on randomly choosing n non-hub nodes with known connectivity information. We use a network system with the Poisson and power-law degree distribution to study the network robustness after applying two failure strategies of non-hub nodes. Additionally, the critical threshold 1pc and the size of the giant component S are determined for a network configuration model with an arbitrary degree distribution. The results indicate that the system undergoes a continuous second-order phase transition subject to the above attack strategies. We find that 1pc gradually tends to be stable after increasing rapidly with n. Moreover, the failure of non-hub nodes with a higher degree is more destructive to the network system and makes it more vulnerable. Furthermore, from comparing the attack strategies with and without memory, the results highlight that the system shows better robustness under a non-memory based attack relative to memory based attacks for n>1. Attacks with memory can block the system’s connectivity more efficiently, which has potential applications in real-world systems. Our model sheds light on network resilience under memory and non-memory based attacks with limited information attacks and provides valuable insights into designing robust real-world systems.

1.
B. D.
Fath
,
U. M.
Scharler
,
R. E.
Ulanowicz
, and
B.
Hannon
, “
Ecological network analysis: Network construction
,”
Ecol. Model.
208
(
1
),
49
55
(
2007
).
2.
Y.
Deng
,
Y. H.
Jiang
,
Y.
Yang
,
Z.
He
,
F.
Luo
, and
J.
Zhou
, “
Molecular ecological network analyses
,”
BMC Bioinf.
13
(
1
),
113
(
2012
).
3.
J.
Kim
,
S.
Radhakrishnan
, and
S. K.
Dhall
, “Measurement and analysis of worm propagation on internet network topology,” in Proceedings of the 13th International Conference on Computer Communications and Networks (IEEE Cat. No. 04EX969) (IEEE, 2004), pp. 495–500.
4.
C.
Gan
,
X.
Yang
,
W.
Liu
,
Q.
Zhu
,
J.
Jin
, and
L.
He
, “
Propagation of computer virus both across the internet and external computers: A complex-network approach
,”
Commun. Nonlinear Sci. Numer. Simul.
19
(
8
),
2785
2792
(
2014
).
5.
S.
Maslov
,
K.
Sneppen
, and
A.
Zaliznyak
, “
Detection of topological patterns in complex networks: Correlation profile of the internet
,”
Phys. A
333
,
529
540
(
2004
).
6.
D.
Li
,
B.
Fu
,
Y.
Wang
,
G.
Lu
,
Y.
Berezin
,
H. E.
Stanley
, and
S.
Havlin
, “
Percolation transition in dynamical traffic network with evolving critical bottlenecks
,”
Proc. Natl. Acad. Sci. U.S.A.
112
(
3
),
669
672
(
2015
).
7.
Y.
Lin
,
Z.
Cai
,
X.
Wang
, and
F.
Hao
, “
Incentive mechanisms for crowdblocking rumors in mobile social networks
,”
IEEE Trans. Veh. Technol.
68
(
9
),
9220
9232
(
2019
).
8.
G.
Dong
,
F.
Wang
,
L. M.
Shekhtman
,
M. M.
Danziger
,
J.
Fan
,
R.
Du
,
J.
Liu
,
L.
Tian
,
H. E.
Stanley
, and
S.
Havlin
, “
Optimal resilience of modular interacting networks
,”
Proc. Natl. Acad. Sci. U.S.A.
118
(
22
),
e1922831118
(
2021
).
9.
G.
Dong
,
Y.
Chen
,
F.
Wang
,
R.
Du
,
L.
Tian
, and
H. E.
Stanley
, “
Robustness on interdependent networks with a multiple-to-multiple dependent relationship
,”
Chaos
29
(
7
),
073107
(
2019
).
10.
R.
Lindelauf
,
P.
Borm
, and
H.
Hamers
, “Understanding terrorist network topologies and their resilience against disruption,” in Counterterrorism and Open Source Intelligence (Springer, 2011), pp. 61–72.
11.
R.
Kali
and
J.
Reyes
, “
Financial contagion on the international trade network
,”
Econ. Inq.
48
(
4
),
1072
1101
(
2010
).
12.
V. M.
Preciado
,
M.
Zargham
,
C.
Enyioha
,
A.
Jadbabaie
, and
G.
Pappas
, “Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks,” in 52nd IEEE Conference on Decision and Control (IEEE, 2013), pp. 7486–7491.
13.
M. E.
J Newman
, “
Spread of epidemic disease on networks
,”
Phys. Rev. E
66
(
1
),
016128
(
2002
).
14.
G.
Dong
,
J.
Fan
,
L. M.
Shekhtman
,
S.
Shai
,
R.
Du
,
L.
Tian
,
X.
Chen
,
H. E.
Stanley
, and
S.
Havlin
, “
Resilience of networks with community structure behaves as if under an external field
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
27
),
6911
6915
(
2018
).
15.
F.
Wang
,
G.
Dong
, and
L.
Tian
, “
Dynamical recovery of complex networks under a localised attack
,”
Algorithms
14
(
9
),
274
(
2021
).
16.
G.
Dong
,
Q.
Yao
,
F.
Wang
,
R.
Du
,
A. L. M.
Vilela
, and
H. E.
Stanley
, “
Percolation on coupled networks with multiple effective dependency links
,”
Chaos
31
(
3
),
033152
(
2021
).
17.
G.
Dong
,
D.
Duan
, and
Y.
Xia
, “
A briefing survey on advances of coupled networks with various patterns
,”
Front. Phys.
9
,
795279
(
2021
).
18.
Å. J.
Holmgren
, “
Using graph models to analyze the vulnerability of electric power networks
,”
Risk Anal.
26
(
4
),
955
969
(
2006
).
19.
A.
Teixeira
,
H.
Sandberg
, and
K. H.
Johansson
, “Networked control systems under cyber attacks with applications to power networks,” in Proceedings of the 2010 American Control Conference (IEEE, 2010), pp. 3690–3696.
20.
S. M.
Wilkinson
,
S.
Dunn
, and
S.
Ma
, “
The vulnerability of the European air traffic network to spatial hazards
,”
Nat. Hazards
60
(
3
),
1027
1036
(
2012
).
21.
R.
Cohen
,
K.
Erez
,
D.
Ben-Avraham
, and
S.
Havlin
, “
Breakdown of the internet under intentional attack
,”
Phys. Rev. Lett.
86
(
16
),
3682
(
2001
).
22.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Error and attack tolerance of complex networks
,”
Nature
406
(
6794
),
378
382
(
2000
).
23.
A. E.
Motter
and
Y.-C.
Lai
, “
Cascade-based attacks on complex networks
,”
Phys. Rev. E
66
(
6
),
065102
(
2002
).
24.
X.
Huang
,
J.
Gao
,
S. V.
Buldyrev
,
S.
Havlin
, and
H. E..
Stanley
, “
Robustness of interdependent networks under targeted attack
,”
Phys. Rev. E
83
(
6
),
065101
(
2011
).
25.
D.
Bánky
,
G.
Iván
, and
V.
Grolmusz
, “
Equal opportunity for low-degree network nodes: A PageRank-based method for protein target identification in metabolic graphs
,”
PLoS One
8
(
1
),
e54204
(
2013
).
26.
F.
Wang
,
G.
Dong
,
L.
Tian
, and
H. E.
Stanley
, “
Percolation behaviors of finite components on complex networks
,”
New J. Phys.
24
(
4
),
043027
(
2022
).
27.
X.
Liu
and
Z.
Li
, “
Local load redistribution attacks in power systems with incomplete network information
,”
IEEE Trans. Smart Grid
5
(
4
),
1665
1676
(
2014
).
28.
M. A.
Rahman
and
H.
Mohsenian-Rad
, “False data injection attacks with incomplete information against smart power grids,” in 2012 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2012), pp. 3153–3158.
29.
X.
Li
,
J. D..
Smith
,
T. N.
Dinh
, and
M. T.
Thai
, “Privacy issues in light of reconnaissance attacks with incomplete information,” in 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (IEEE, 2016), pp. 311–318.
30.
T.
Qing
,
G.
Dong
,
F.
Wang
,
R.
Du
, and
L.
Tian
, “
Phase transition behavior of finite clusters under localized attack
,”
Chaos
32
(
2
),
023105
(
2022
).
31.
A.
Srivastava
,
T.
Morris
,
T.
Ernster
,
C.
Vellaithurai
,
S.
Pan
, and
U.
Adhikari
, “
Modeling cyber-physical vulnerability of the smart grid with incomplete information
,”
IEEE Trans. Smart Grid
4
(
1
),
235
244
(
2013
).
32.
Z.
Cheng
and
J.
Cao
, “
Cascade of failures in interdependent networks coupled by different type networks
,”
Phys. A
430
,
193
200
(
2015
).
33.
J.
Wu
,
H.-Z.
Deng
,
Y.-J.
Tan
, and
D.-Z.
Zhu
, “
Vulnerability of complex networks under intentional attack with incomplete information
,”
J. Phys. A: Math. Theor.
40
(
11
),
2665
(
2007
).
34.
Y.
Liu
,
H.
Sanhedrai
,
G. G.
Dong
,
L. M.
Shekhtman
,
F.
Wang
,
S. V.
Buldyrev
, and
S.
Havlin
, “
Efficient network immunization under limited knowledge
,”
Natl. Sci. Rev.
8
(
1
),
nwaa229
(
2021
).
35.
M.
Feshanjerdi
and
A. A.
Saberi
, “
Universality class of epidemic percolation transitions driven by random walks
,”
Phys. Rev. E
104
(
6
),
064125
(
2021
).
36.
J.
Fan
,
J.
Meng
,
Y.
Liu
,
A. A.
Saberi
,
J.
Kurths
, and
J.
Nagler
, “
Universal gap scaling in percolation
,”
Nat. Phys.
16
(
4
),
455
461
(
2020
).
You do not currently have access to this content.