Despite a long history of time series analysis/prediction, theoretically few is known on how to predict the maxima better. To predict the maxima of a flow more accurately, we propose to use its local cross sections or plates the flow passes through. First, we provide a theoretical underpinning for the observability using local cross sections. Second, we show that we can improve short-term prediction of local maxima by employing a generalized prediction error, which weighs more for the larger values. The proposed approach is demonstrated by rainfalls, where heavier rains may cause casualties.
REFERENCES
1.
P.
Bacher
, H.
Madesen
, and H. A.
Nelsen
, “Online short-term solar power forecasting
,” Sol. Energy
83
, 1772
–1783
(2009
). 2.
Y.
Hirata
, J. M.
Amigó
, S.
Horai
, K.
Ogimoto
, and K.
Aihara
, “Forecasting wind power ramps with prediction coordinates
,” Chaos
31
, 103105
(2021
). 3.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics Vol. 898 (Springer, 1981), pp. 366–381.4.
T.
Sauer
, J. A.
Yorke
, and M.
Casdagli
, “Embedology
,” J. Stat. Phys.
65
, 579
–616
(1991
). 5.
S.
Okuno
, T.
Takeuchi
, S.
Horai
, K.
Aihara
, and Y.
Hirata
, “Avoiding underestimates for time series prediction by state-dependent local integration,” Mathematical Engineering Technical Reports METR 2017–22 (2017).6.
D.
Kilminster
, “Modelling dynamical systems via behaviour criteria,” Ph.D. thesis (Department of Mathematics and Statistics, University of Western Australia, 2002).7.
S.
Okuno
, K.
Aihara
, and Y.
Hirata
, “Forecasting high-dimensional dynamics exploiting suboptimal embeddings
,” Sci. Rep.
10
, 366
(2020
). 8.
J. D.
Victor
and K. P.
Purpura
, “Metric-space analysis of spike trains: Theory, algorithms and application
,” Netw:: Comput. Neural Syst.
8
, 127
–164
(2009
). 9.
S.
Smale
, “Stable manifolds for differential equations and diffeomorphisms
,” Ann. Sc. Norm. Super. Pisa, Cl. Sci.
série, tome 17
(1–2), 97–116 (1963).10.
Y.
Hirata
, T.
Stemler
, D.
Eroglu
, and N.
Marwan
, “Prediction of flow dynamics using point processes
,” Chaos
28
, 011101
(2018
). 11.
T.
Sauer
, “Reconstruction of dynamical systems from interspike intervals
,” Phys. Rev. Lett.
72
, 3811
–3814
(1994
). 12.
J. P.
Huke
and D. S.
Broomhead
, “Embedding theorems for non-uniformly sampled dynamical systems
,” Nonlinearity
20
, 2205
–2244
(2007
). 13.
R. L.
Devaney
, An Introduction to Chaotic Dynamical Systems
, 2nd ed. (Addison-Wesley
, Reading, MA
, 1989
).14.
O. E.
Rössler
, “An equation for continuous chaos
,” Phys. Lett.
57
, 397
–398
(1976
). 15.
E. N.
Lorenz
, “Predictability: A problem partly solved,” in Proceedings of the Seminar on Predictability (ECMWF, 1996), Vol. 1, pp. 1–18.16.
J. A.
Hansen
and L. A.
Smith
, “The role of operational constraints in selecting supplementary observations
,” J. Atmos. Sci.
57
, 2859
–2871
(2000
). 17.
A. M.
Fraser
and H. L.
Swinney
, “Independent coordinates for strange attractors from mutual information
,” Phys. Rev. A
33
, 1134
–1140
(1986
). 18.
M. B.
Kennel
, R.
Brown
, and H. D. I.
Abarbanel
, “Determining embedding dimension for phase-space reconstruction using a geometrical construction
,” Phys. Rev. A
45
, 3403
–3411
(1992
). 19.
I.
Ebert-Uphof
and K.
Hilburn
, “Evaluation, tuning, and interpretation of neural networks for working with images in meteorological applications
,” Bull. Am. Meteorol. Soc.
101
, E2149
–E2170
(2020
). 20.
P.
Hess
and N.
Boers
, “Deep learning for improving numerical weather prediction of rainfall extremes
,” Earth Space Sci. Open Arch.
(published online 2021).21.
D.
Faranda
, G.
Messori
, and P.
Yiou
, “Dynamical proxies of North Atlantic predictability and extremes
,” Sci. Rep.
7
, 1685
(2017
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.