Despite a long history of time series analysis/prediction, theoretically few is known on how to predict the maxima better. To predict the maxima of a flow more accurately, we propose to use its local cross sections or plates the flow passes through. First, we provide a theoretical underpinning for the observability using local cross sections. Second, we show that we can improve short-term prediction of local maxima by employing a generalized prediction error, which weighs more for the larger values. The proposed approach is demonstrated by rainfalls, where heavier rains may cause casualties.

1.
P.
Bacher
,
H.
Madesen
, and
H. A.
Nelsen
, “
Online short-term solar power forecasting
,”
Sol. Energy
83
,
1772
1783
(
2009
).
2.
Y.
Hirata
,
J. M.
Amigó
,
S.
Horai
,
K.
Ogimoto
, and
K.
Aihara
, “
Forecasting wind power ramps with prediction coordinates
,”
Chaos
31
,
103105
(
2021
).
3.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics Vol. 898 (Springer, 1981), pp. 366–381.
4.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
5.
S.
Okuno
,
T.
Takeuchi
,
S.
Horai
,
K.
Aihara
, and
Y.
Hirata
, “Avoiding underestimates for time series prediction by state-dependent local integration,” Mathematical Engineering Technical Reports METR 2017–22 (2017).
6.
D.
Kilminster
, “Modelling dynamical systems via behaviour criteria,” Ph.D. thesis (Department of Mathematics and Statistics, University of Western Australia, 2002).
7.
S.
Okuno
,
K.
Aihara
, and
Y.
Hirata
, “
Forecasting high-dimensional dynamics exploiting suboptimal embeddings
,”
Sci. Rep.
10
,
366
(
2020
).
8.
J. D.
Victor
and
K. P.
Purpura
, “
Metric-space analysis of spike trains: Theory, algorithms and application
,”
Netw:: Comput. Neural Syst.
8
,
127
164
(
2009
).
9.
S.
Smale
, “
Stable manifolds for differential equations and diffeomorphisms
,”
Ann. Sc. Norm. Super. Pisa, Cl. Sci.
3e série, tome
17
(1–2), 97–116 (1963).
10.
Y.
Hirata
,
T.
Stemler
,
D.
Eroglu
, and
N.
Marwan
, “
Prediction of flow dynamics using point processes
,”
Chaos
28
,
011101
(
2018
).
11.
T.
Sauer
, “
Reconstruction of dynamical systems from interspike intervals
,”
Phys. Rev. Lett.
72
,
3811
3814
(
1994
).
12.
J. P.
Huke
and
D. S.
Broomhead
, “
Embedding theorems for non-uniformly sampled dynamical systems
,”
Nonlinearity
20
,
2205
2244
(
2007
).
13.
R. L.
Devaney
,
An Introduction to Chaotic Dynamical Systems
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1989
).
14.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett.
57
,
397
398
(
1976
).
15.
E. N.
Lorenz
, “Predictability: A problem partly solved,” in Proceedings of the Seminar on Predictability (ECMWF, 1996), Vol. 1, pp. 1–18.
16.
J. A.
Hansen
and
L. A.
Smith
, “
The role of operational constraints in selecting supplementary observations
,”
J. Atmos. Sci.
57
,
2859
2871
(
2000
).
17.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
,
1134
1140
(
1986
).
18.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
19.
I.
Ebert-Uphof
and
K.
Hilburn
, “
Evaluation, tuning, and interpretation of neural networks for working with images in meteorological applications
,”
Bull. Am. Meteorol. Soc.
101
,
E2149
E2170
(
2020
).
20.
P.
Hess
and
N.
Boers
, “
Deep learning for improving numerical weather prediction of rainfall extremes
,”
Earth Space Sci. Open Arch.
(published online 2021).
21.
D.
Faranda
,
G.
Messori
, and
P.
Yiou
, “
Dynamical proxies of North Atlantic predictability and extremes
,”
Sci. Rep.
7
,
1685
(
2017
).

Supplementary Material

You do not currently have access to this content.