Despite the extensive literature related to earthquakes, an effective method to forecast and avoid occasional seismic hazards that cause substantial damage is lacking. The Sun has recently been identified as a potential precursor to earthquakes, although no causal relationship between its activity and the Earth’s seismicity has been established. This study was aimed at investigating whether such a relationship exists and whether it can be used to improve earthquake forecasting. The edit distances between earthquake point processes were combined with delay-coordinate distances for sunspot numbers. The comparison of these two indicated the existence of unidirectional causal coupling from solar activity to seismicity on Earth, and a radial basis function regressor showed accuracy improvements in the largest magnitude prediction of next days by 2.6%–17.9% in the odds ratio when sunspot distances were included.

1.
S.
Stein
and
M.
Wysession
,
An Introduction to Seismology, Earthquakes, and Earth Structure
(
Wiley-Blackwell
,
2003
).
2.
Y.
Ogata
,
K.
Katsura
,
H.
Tsuruoka
, and
N.
Hirata
, “
High-resolution 3D earthquake forecasting beneath the greater Tokyo area
,”
Earth Planets Space
71
,
113
(
2019
).
3.
A.
Bhatia
,
S.
Pasari
, and
A.
Mehta
, “
Earthquake forecasting using artificial neural networks
,”
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
XLII-5
,
823
827
(
2018
).
4.
O.
Dorostkar
and
J.
Carmeliet
, “
Grain friction controls characteristics of seismic cycle in faults with granular gouge
,”
J. Geophys. Res.: Solid Earth
124
,
6475
6489
, https://doi.org/10.1029/2019JB017374 (
2019
).
5.
J.
Rivière
,
Z.
Lv
,
P.
Johnson
, and
C.
Marone
, “
Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults
,”
Earth Planet. Sci. Lett.
482
,
407
413
(
2018
).
6.
A.
Niemeijer
,
C.
Marone
, and
D.
Elsworth
, “
Frictional strength and strain weakening in simulated fault gouge: Competition between geometrical weakening and chemical strengthening
,”
J. Geophys. Res.: Solid Earth
115
,
B10207
, https://doi.org/10.1029/2009JB000838 (
2010
).
7.
H.
Fujiwara
,
M.
Kamogawa
,
M.
Ikeda
,
J.
Liu
,
H.
Sakata
,
Y.
Chen
,
H.
Ofuruton
,
S.
Muramatsu
,
Y.
Chuo
, and
Y.
Ohtsuki
, “
Atmospheric anomalies observed during earthquake occurrences
,”
Geophys. Res. Lett.
31
,
L17110
, https://doi.org/10.1029/2004GL019865 (
2004
).
8.
M. A.
Fenoglio
,
M. J.
Johnston
, and
J. D.
Byerlee
, “
Magnetic and electric fields associated with changes in high pore pressure in fault zones: Application to the Loma Prieta ULF emissions
,”
J. Geophys. Res.: Solid Earth
100
,
12951
12958
, https://doi.org/10.1029/95JB00076 (
1995
).
9.
A.
Draganov
,
U.
Inan
, and
Y. N.
Taranenko
, “
ULF magnetic signatures at the earth surface due to ground water flow: A possible precursor to earthquakes
,”
Geophys. Res. Lett.
18
,
1127
1130
, https://doi.org/10.1029/91GL01000 (
1991
).
10.
A. D. K.
Tareen
,
K. M.
Asim
,
K. J.
Kearfott
,
M.
Rafique
,
M. S. A.
Nadeem
,
T.
Iqbal
, and
S. U.
Rahman
, “
Automated anomalous behaviour detection in soil radon gas prior to earthquakes using computational intelligence techniques
,”
J. Environ. Radioact.
203
,
48
54
(
2019
).
11.
P.
Richon
,
J.-C.
Sabroux
,
M.
Halbwachs
,
J.
Vandemeulebrouck
,
N.
Poussielgue
,
J.
Tabbagh
, and
R.
Punongbayan
, “
Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994)
,”
Geophys. Res. Lett.
30
,
529
, https://doi.org/10.1029/2003GL016902 (
2003
).
12.
D.
Ghosh
,
A.
Deb
, and
R.
Sengupta
, “
Anomalous radon emission as precursor of earthquake
,”
J. Appl. Geophys.
69
,
67
81
(
2009
).
13.
R. G.
Andrzejak
and
T.
Kreuz
, “
Characterizing unidirectional couplings between point processes and flows
,”
Europhys. Lett.
96
,
50012
(
2011
).
14.
See https://earthquake.usgs.gov/earthquakes/search/ for the worldwide earthquake catalog.
15.
See https://www.geonet.org.nz/ for the New Zealand earthquake catalog.
16.
See https://www.data.jma.go.jp for the Japanese earthquake catalog.
17.
https://www.aavso.org/data-usage-guidelines for Data Usage Guidelines; data accessed through https://lasp.colorado.edu/lisird/.
18.
J. D.
Victor
and
K. P.
Purpura
, “
Metric-space analysis of spike trains: Theory, algorithms and application
,”
Netw.: Comput. Neural Syst.
8
,
127
164
(
2009
).
19.
S.
Suzuki
,
Y.
Hirata
, and
K.
Aihara
, “
Definition of distance for marked point process data and its application to recurrence plot-based analysis of exchange tick data of foreign currencies
,”
Int. J. Bifurcation Chaos
20
,
3699
3708
(
2011
).
20.
Y.
Hirata
and
N.
Sukegawa
, “
Two efficient calculations of edit distance between marked point processes
,”
Chaos
29
,
101107
(
2019
).
21.
J. P.
Huke
and
D. S.
Broomhead
, “
Embedding theorems for non-uniformly sampled dynamical systems
,”
Nonlinearity
20
,
2205
(
2007
).
22.
T.
Sauer
, “
Reconstruction of dynamical systems from interspike intervals
,”
Phys. Rev. Lett.
72
,
3811
3814
(
1994
).
23.
Y.
Hirata
,
J. M.
Amigó
,
Y.
Matsuzaka
,
R.
Yokota
,
H.
Mushiake
, and
K.
Aihara
, “
Detecting causality by combined use of multiple methods: Climate and brain examples
,”
PLoS One
11
,
e0158572
(
2016
).
24.
J.
Stark
, “
Delay embeddings for forced systems. I. Deterministic forcing
,”
J. Nonlinear Sci.
9
,
255
332
(
1999
).
25.
Y.
Hirata
and
K.
Aihara
, “
Identifying hidden common causes from bivariate time series: A method using recurrence plots
,”
Phys. Rev. E
81
,
016203
(
2010
).
26.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.
27.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
28.
F. P.
Schoenberg
and
K. E.
Tranbarger
, “
Description of earthquake aftershock sequences using prototype point patterns
,”
Environmetrics
19
,
271
286
(
2008
).
29.
C. M.
Bishop
,
Pattern Recognition
(
Springer
,
2006
).
30.
J.
Gribbin
, “
Relation of sunspot and earthquake activity
,”
Science
173
,
558
(
1971
).
31.
G.
Anagnostopoulos
,
I.
Spyroglou
,
A.
Rigas
,
P.
Preka-Papadema
,
H.
Mavromichalaki
, and
I.
Kiosses
, “
The sun as a significant agent provoking earthquakes
,”
Eur. Phys. J. Spec. Top.
230
,
287
333
(
2021
).
32.
J. J.
Love
and
J. N.
Thomas
, “
Insignificant solar-terrestrial triggering of earthquakes
,”
Geophys. Res. Lett.
40
,
1165
1170
, https://doi.org/10.1002/grl.50211 (
2013
).
33.
M.
Hagen
and
A.
Azevedo
, “
Sun-moon-earth interactions, external factors for earthquakes
,”
Nat. Sci.
9
,
162
(
2017
).
34.
J. M.
Huzaimy
and
K.
Yumoto
, “Possible correlation between solar activity and global seismicity,” in Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace) (IEEE, 2011), pp. 138–141.
35.
M.
Tavares
and
A.
Azevedo
, “
Influences of solar cycles on earthquakes
,”
Nat. Sci.
3
,
436
(
2011
).
36.
C. A.
Vargas
and
E. D.
Kastle
, “
Does the sun trigger earthquakes?
,”
Nat. Sci.
4
,
595
600
(
2012
).
37.
X.
San Liang
, “
Unraveling the cause-effect relation between time series
,”
Phys. Rev. E
90
,
052150
(
2014
).
38.
Y.
Hirata
,
K.
Iwayama
, and
K.
Aihara
, “
Possibility of short-term probabilistic forecasts for large earthquakes making good use of the limitations of existing catalogs
,”
Phys. Rev. E
94
,
042217
(
2016
).
39.
We used the same parameters as the authors in Hirata et al.,23 namely, B=20 and c=10.
40.
C. W.
Granger
, “
Investigating causal relations by econometric models and cross-spectral methods
,”
Econom.: J. Econom. Soc.
37
,
424
438
(
1969
).
41.
Recall that we had excluded latitude and longitude from the point processes when predicting the maximum magnitude in the worldwide case. Here, however, latitude and longitude were included, encoded in the same way as the latitude and longitude to be predicted.

Supplementary Material

You do not currently have access to this content.