Renewable energy sources in modern power systems pose a serious challenge to the power system stability in the presence of stochastic fluctuations. Many efforts have been made to assess power system stability from the viewpoint of the bifurcation theory. However, these studies have not covered the dynamic evolution of renewable energy integrated, non-autonomous power systems. Here, we numerically explore the transition phenomena exhibited by a non-autonomous stochastic bi-stable power system oscillator model. We use additive white Gaussian noise to model the stochasticity in power systems. We observe that the delay in the transition observed for the variation of mechanical power as a function of time shows significant variations in the presence of noise. We identify that if the angular velocity approaches the noise floor before crossing the unstable manifold, the rate at which the parameter evolves has no control over the transition characteristics. In such cases, the response of the system is purely controlled by the noise, and the system undergoes noise-induced transitions to limit-cycle oscillations. Furthermore, we employ an emergency control strategy to maintain the stable non-oscillatory state once the system has crossed the quasi-static bifurcation point. We demonstrate an effective control strategy that opens a possibility of maintaining the stability of electric utility that operates near the physical limits.

1.
P.
Ju
,
H.
Li
,
X.
Pan
,
C.
Gan
,
Y.
Liu
, and
Y.
Liu
, “
Stochastic dynamic analysis for power systems under uncertain variability
,”
IEEE Trans. Power Syst.
33
(
4
),
3789
3799
(
2017
).
2.
Y. V.
Makarov
,
P. V.
Etingov
,
J.
Ma
,
Z.
Huang
, and
K.
Subbarao
, “
Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures
,”
IEEE Trans. Sustainable Energy
2
(
4
),
433
442
(
2011
).
3.
C.
Wang
,
L.
Shi
,
L.
Yao
,
L.
Wang
,
Y.
Ni
, and
M.
Bazargan
, “Modelling analysis in power system small signal stability considering uncertainty of wind generation,” in IEEE PES General Meeting (IEEE, 2010), pp. 1–7.
4.
S. M.
Shahidehpour
and
J.
Qiu
, “
Effect of random perturbations on the dynamic behavior of power systems
,”
Electr. Power Syst. Res.
11
(
2
),
117
127
(
1986
).
5.
R. M.
Hassan
and
C. O.
Nwankpa
, “A stochastic model for power system transformer tap-changers,” in 1992 American Control Conference (IEEE, 1992), pp. 1732–1733.
6.
M.
Olsson
,
M.
Perninge
, and
L.
Söder
, “
Modeling real-time balancing power demands in wind power systems using stochastic differential equations
,”
Electr. Power Syst. Res.
80
(
8
),
966
974
(
2010
).
7.
R.
Calif
, “
PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation
,”
Appl. Energy
99
,
173
182
(
2012
).
8.
Y.
Xu
,
F.
Wen
,
H.
Zhao
,
M.
Chen
,
Z.
Yang
, and
H.
Shang
, “
Stochastic small signal stability of a power system with uncertainties
,”
Energies
11
(
11
),
2980
(
2018
).
9.
A. S.
Pikovsky
and
J.
Kurths
, “
Coherence resonance in a noise-driven excitable system
,”
Phys. Rev. Lett.
78
(
5
),
775
(
1997
).
10.
O. V.
Ushakov
,
H.-J.
Wünsche
,
F.
Henneberger
,
I. A.
Khovanov
,
L.
Schimansky-Geier
, and
M. A.
Zaks
, “
Coherence resonance near a Hopf bifurcation
,”
Phys. Rev. Lett.
95
(
12
),
123903
(
2005
).
11.
I.
Bashkirtseva
,
T.
Ryazanova
, and
L.
Ryashko
, “
Stochastic bifurcations caused by multiplicative noise in systems with hard excitement of auto-oscillations
,”
Phys. Rev. E
92
(
4
),
042908
(
2015
).
12.
C. O.
Nwankpa
,
S. M.
Shahidehpour
, and
Z.
Schuss
, “
A stochastic approach to small disturbance stability analysis
,”
IEEE Trans. Power Syst.
7
(
4
),
1519
1528
(
1992
).
13.
J. R.
Hockenberry
and
B. C.
Lesieutre
, “
Evaluation of uncertainty in dynamic simulations of power system models: The probabilistic collocation method
,”
IEEE Trans. Power Syst.
19
(
3
),
1483
1491
(
2004
).
14.
P.
Kundur
,
Power System Stability and Control
(
McGraw Hill
,
New York
,
2007
).
15.
C.
De Marco
and
A.
Bergen
, “
A security measure for random load disturbances in nonlinear power system models
,”
IEEE Trans. Circuits Syst.
34
(
12
),
1546
1557
(
1987
).
16.
K.
Wang
and
M. L.
Crow
, “
The Fokker–Planck equation for power system stability probability density function evolution
,”
IEEE Trans. Power Syst.
28
(
3
),
2994
3001
(
2013
).
17.
G.
Ghanavati
,
P. D. H.
Hines
,
T. I.
Lakoba
, and
E.
Cotilla-Sanchez
, “
Understanding early indicators of critical transitions in power systems from autocorrelation functions
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
61
(
9
),
2747
2760
(
2014
).
18.
Z. Y.
Dong
,
J. H.
Zhao
, and
D. J.
Hill
, “
Numerical simulation for stochastic transient stability assessment
,”
IEEE Trans. Power Syst.
27
(
4
),
1741
1749
(
2012
).
19.
F.
Milano
and
R.
Zárate-Miñano
, “
A systematic method to model power systems as stochastic differential algebraic equations
,”
IEEE Trans. Power Syst.
28
(
4
),
4537
4544
(
2013
).
20.
T.
Odun-Ayo
and
M. L.
Crow
, “
Structure-preserved power system transient stability using stochastic energy functions
,”
IEEE Trans. Power Syst.
27
(
3
),
1450
1458
(
2012
).
21.
S. V.
Dhople
,
Yu. C.
Chen
,
L.
DeVille
, and
A. D.
Domínguez-García
, “
Analysis of power system dynamics subject to stochastic power injections
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
60
(
12
),
3341
3353
(
2013
).
22.
K.
Wang
and
M. L.
Crow
, “Investigation on singularity of stochastic differential algebraic power system model,” in 2011 North American Power Symposium (IEEE, 2011), pp. 1–5.
23.
S. M.
Baer
,
T.
Erneux
, and
J.
Rinzel
, “
The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance
,”
SIAM J. Appl. Math.
49
(
1
),
55
71
(
1989
).
24.
J.
Tony
,
S.
Subarna
,
K. S.
Syamkumar
,
G.
Sudha
,
S.
Akshay
,
E. A.
Gopalakrishnan
,
E.
Surovyatkina
, and
R. I.
Sujith
, “
Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system
,”
Sci. Rep.
7
(
1
),
5414
(
2017
).
25.
K. S.
Suchithra
and
E. A.
Gopalakrishnan
, “Rate dependent transitions in power systems,” in 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) (IEEE, 2018), pp. 1–5.
26.
K. S.
Suchithra
,
E. A.
Gopalakrishnan
,
E.
Surovyatkina
, and
J.
Kurths
, “
Rate-induced transitions and advanced takeoff in power systems
,”
Chaos
30
(
6
),
061103
(
2020
).
27.
A.
Majumdar
,
J.
Ockendon
,
P.
Howell
, and
E.
Surovyatkina
, “
Transitions through critical temperatures in nematic liquid crystals
,”
Phys. Rev. E
88
(
2
),
022501
(
2013
).
28.
J.
Ma
,
Y.
Sun
,
X.
Yuan
,
J.
Kurths
, and
M.
Zhan
, “
Dynamics and collapse in a power system model with voltage variation: The damping effect
,”
PLoS One
11
(
11
),
e0165943
(
2016
).
29.
W.
Ji
and
V.
Venkatasubramanian
, “Hard-limit induced chaos in a single-machine-infinite-bus power system,” in Proceedings of 1995 34th IEEE Conference on Decision and Control (IEEE, 1995), Vol. 4, pp. 3465–3470.
30.
K.
Schmietendorf
,
J.
Peinke
, and
O.
Kamps
, “On the stability and quality of power grids subjected to intermittent feed-in,” arXiv:1611.08235.
31.
S.
Auer
,
F.
Hellmann
,
M.
Krause
, and
J.
Kurths
, “
Stability of synchrony against local intermittent fluctuations in tree-like power grids
,”
Chaos
27
(
12
),
127003
(
2017
).
32.
B.
Yuan
,
M.
Zhou
,
G.
Li
, and
X.-P.
Zhang
, “
Stochastic small-signal stability of power systems with wind power generation
,”
IEEE Trans. Power Syst.
30
(
4
),
1680
1689
(
2014
).
33.
R. L.
Honeycutt
, “
Stochastic Runge–Kutta algorithms. I. White noise
,”
Phys. Rev. A
45
(
2
),
600
(
1992
).
34.
V.
Ajjarapu
and
B.
Lee
, “
Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system
,”
IEEE Trans. Power Syst.
7
(
1
),
424
431
(
1992
).
35.
G.
Pierrou
and
X.
Wang
, “
Analytical study of the impacts of stochastic load fluctuation on the dynamic voltage stability margin using bifurcation theory
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
67
(
4
),
1286
1295
(
2019
).
36.
J.
Cidras
and
A. E.
Feijoo
, “
A linear dynamic model for asynchronous wind turbines with mechanical fluctuations
,”
IEEE Trans. Power Syst.
17
(
3
),
681
687
(
2002
).
37.
E. A.
Gopalakrishnan
and
R. I.
Sujith
, “
Effect of external noise on the hysteresis characteristics of a thermoacoustic system
,”
J. Fluid Mech.
776
,
334
353
(
2015
).
38.
P. G.
Meyer
,
M.
Anvari
, and
H.
Kantz
, “
Identifying characteristic time scales in power grid frequency fluctuations with DFA
,”
Chaos
30
(
1
),
013130
(
2020
).
39.
M.
Anvari
,
L. R.
Gorjão
,
M.
Timme
,
D.
Witthaut
,
B.
Schäfer
, and
H.
Kantz
, “
Stochastic properties of the frequency dynamics in real and synthetic power grids
,”
Phys. Rev. Res.
2
(
1
),
013339
(
2020
).
40.
E. D.
Surovyatkina
,
Yu. A.
Kravtsov
, and
J.
Kurths
, “
Fluctuation growth and saturation in nonlinear oscillators on the threshold of bifurcation of spontaneous symmetry breaking
,”
Phys. Rev. E
72
(
4
),
046125
(
2005
).
41.
V. R.
Unni
,
E. A.
Gopalakrishnan
,
K. S.
Syamkumar
,
R. I.
Sujith
,
E.
Surovyatkina
, and
J.
Kurths
, “
Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system
,”
Chaos
29
(
3
),
031102
(
2019
).
42.
J. M.
Saucedo-Solorio
,
A. N.
Pisarchik
, and
V.
Aboites
, “
Shift of critical points in the parametrically modulated hénon map with coexisting attractors
,”
Phys. Lett. A
304
(
1–2
),
21
29
(
2002
).
43.
A. N.
Pisarchik
and
R.
Corbalán
, “
Shift of attractor boundaries in a system with a slow harmonic parameter perturbation
,”
Phys. D
150
(
1–2
),
14
24
(
2001
).
44.
H. G.
Davies
and
K.
Rangavajhula
, “
A period-doubling bifurcation with slow parametric variation and additive noise
,”
Proc. R. Soc. London, Ser. A
457
(
2016
),
2965
2982
(
2001
).
45.
A. N.
Pisarchik
and
B. K.
Goswami
, “
Annihilation of one of the coexisting attractors in a bistable system
,”
Phys. Rev. Lett.
84
(
7
),
1423
(
2000
).
46.
P.
Kundur
and
G. K.
Morison
, “
Techniques for emergency control of power systems and their implementation
,”
IFAC Proc. Vol.
30
(
17
),
639
644
(
1997
).
47.
A. N.
Pisarchik
, “
Dynamical tracking of unstable periodic orbits
,”
Phys. Lett. A
242
(
3
),
152
162
(
1998
).
48.
B. E.
Martínez-Zerega
,
A. N.
Pisarchik
, and
L. S.
Tsimring
, “
Using periodic modulation to control coexisting attractors induced by delayed feedback
,”
Phys. Lett. A
318
(
1–2
),
102
111
(
2003
).
49.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
(
4
),
167
218
(
2014
).
50.
J. W.
Simpson-Porco
,
F.
Dörfler
, and
F.
Bullo
, “
Voltage collapse in complex power grids
,”
Nat. Commun.
7
(
1
),
1
8
(
2016
).
51.
G.
Ollivier
,
D.
Magda
,
A.
Mazé
,
G.
Plumecocq
, and
C.
Lamine
, “
Agroecological transitions: What can sustainability transition frameworks teach us? An ontological and empirical analysis
,”
Ecol. Soc.
23
(
2
),
18
(
2018
).
52.
E.
Sachet
,
O.
Mertz
,
J.-F.
Le Coq
,
G. S.
Cruz-Garcia
,
W.
Francesconi
,
M.
Bonin
, and
M.
Quintero
, “
Agroecological transitions: A systematic review of research approaches and prospects for participatory action methods
,”
Front. Sustain. Food Syst.
5
,
397
(
2021
).
You do not currently have access to this content.