Cascading failures abound in complex systems and the Bak–Tang–Weisenfeld (BTW) sandpile model provides a theoretical underpinning for their analysis. Yet, it does not account for the possibility of nodes having oscillatory dynamics, such as in power grids and brain networks. Here, we consider a network of Kuramoto oscillators upon which the BTW model is unfolding, enabling us to study how the feedback between the oscillatory and cascading dynamics can lead to new emergent behaviors. We assume that the more out-of-sync a node is with its neighbors, the more vulnerable it is and lower its load-carrying capacity accordingly. Also, when a node topples and sheds load, its oscillatory phase is reset at random. This leads to novel cyclic behavior at an emergent, long timescale. The system spends the bulk of its time in a synchronized state where load builds up with minimal cascades. Yet, eventually, the system reaches a tipping point where a large cascade triggers a “cascade of larger cascades,” which can be classified as a dragon king event. The system then undergoes a short transient back to the synchronous, buildup phase. The coupling between capacity and synchronization gives rise to endogenous cascade seeds in addition to the standard exogenous ones, and we show their respective roles. We establish the phenomena from numerical studies and develop the accompanying mean-field theory to locate the tipping point, calculate the load in the system, determine the frequency of the long-time oscillations, and find the distribution of cascade sizes during the buildup phase.

1.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality: An explanation of the 1/f noise
,”
Phys. Rev. Lett.
59
(
4
),
381
(
1987
).
2.
K.-I.
Goh
,
D.-S.
Lee
,
B.
Kahng
, and
D.
Kim
, “
Sandpile on scale-free networks
,”
Phys. Rev. Lett.
91
(
14
),
148701
(
2003
).
3.
M.
Turalska
,
K.
Burghardt
,
M.
Rohden
,
A.
Swami
, and
R. M.
D’Souza
, “
Cascading failures in scale-free interdependent networks
,”
Phys. Rev. E
99
(
3
),
032308
(
2019
).
4.
Y.
Kuramoto
, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 30 (Springer, 1975), p. 420.
5.
Y.
Kuramoto
, “Chemical turbulence,” in Chemical Oscillations, Waves, and Turbulence (Springer, 1984), pp. 111–140.
6.
F. A.
Rodrigues
,
T. K. D. M.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
7.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
(
1
),
137
(
2005
).
8.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
(
6
),
1645
1662
(
1990
).
9.
R. M.
D’Souza
,
J.
Gómez-Gardenes
,
J.
Nagler
, and
A.
Arenas
, “
Explosive phenomena in complex networks
,”
Adv. Phys.
68
(
3
),
123
223
(
2019
).
10.
M.
Newman
,
Networks
(
Oxford University Press
,
2018
).
11.
A.
Barrat
,
M.
Barthelemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
2008
).
12.
R. M.
D’Souza
, “
Curtailing cascading failures
,”
Science
358
(
6365
),
860
861
(
2017
).
13.
C.
Zheng
,
Q.
Yu
,
S.
Du
,
Q.
He
, and
J.
He
, “Power grid self-organized criticality simulation model based on multi-sandpile,” in 2017 Chinese Automation Congress (CAC) (IEEE, 2017), pp. 1132–1137.
14.
C. D.
Brummitt
,
R. M.
D’Souza
, and
E. A.
Leicht
, “
Suppressing cascades of load in interdependent networks
,”
Proc. Natl. Acad. Sci. U.S.A.
109
(
12
),
E680
E689
(
2012
).
15.
C.
Liang
,
W.
Liu
,
J.
Liang
, and
Z.
Chen
, “The influences of power grid structure on self-organized criticality,” in 2010 International Conference on Power System Technology (IEEE, 2010), pp. 1–6.
16.
I.
Dobson
,
B. A.
Carreras
,
V. E.
Lynch
, and
D. E.
Newman
, “
Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization
,”
Chaos
17
(
2
),
026103
(
2007
).
17.
B. A.
Carreras
,
D. E.
Newman
,
I.
Dobson
, and
A. B.
Poole
, “
Evidence for self-organized criticality in a time series of electric power system blackouts
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
51
(
9
),
1733
1740
(
2004
).
18.
I.
Dobson
,
B. A.
Carreras
,
V. E.
Lynch
, and
D. E.
Newman
, “An initial model for complex dynamics in electric power system blackouts,” in Proceedings of the 34th Annual Hawaii International Conference on System Sciences (IEEE, 2001), pp. 710–718.
19.
A. J.
Fontenele
,
N. A. P.
de Vasconcelos
,
T.
Feliciano
,
L. A. A.
Aguiar
,
C.
Soares-Cunha
,
B.
Coimbra
,
L. D.
Porta
,
S.
Ribeiro
,
A. J.
Rodrigues
,
N.
Sousa
et al., “
Criticality between cortical states
,”
Phys. Rev. Lett.
122
(
20
),
208101
(
2019
).
20.
T.
Bellay
,
A.
Klaus
,
S.
Seshadri
, and
D.
Plenz
, “
Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state
,”
eLife
4
,
1868
(
2015
).
21.
W. L.
Shew
,
W. P.
Clawson
,
J.
Pobst
,
Y.
Karimipanah
,
N. C.
Wright
, and
R.
Wessel
, “
Adaptation to sensory input tunes visual cortex to criticality
,”
Nat. Phys.
11
(
8
),
659
663
(
2015
).
22.
N.
Friedman
,
S.
Ito
,
B. A. W.
Brinkman
,
M.
Shimono
,
R. E. L.
DeVille
,
K. A.
Dahmen
,
J. M.
Beggs
, and
T. C.
Butler
, “
Universal critical dynamics in high resolution neuronal avalanche data
,”
Phys. Rev. Lett.
108
(
20
),
11
(
2012
).
23.
M.
Rubinov
,
O.
Sporns
,
J.-P.
Thivierge
, and
M.
Breakspear
, “
Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons
,”
PLoS Comput. Biol.
7
(
6
),
e1002038
(
2011
).
24.
D. R.
Chialvo
, “
Emergent complex neural dynamics
,”
Nat. Phys.
6
(
10
),
744
750
(
2010
).
25.
J. M.
Beggs
and
D.
Plenz
, “
Neuronal avalanches in neocortical circuits
,”
J. Neurosci.
23
(
35
),
11167
11177
(
2003
).
26.
F.
Dörfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
(
6
),
1539
1564
(
2014
).
27.
K.
Schmietendorf
,
J.
Peinke
,
R.
Friedrich
, and
O.
Kamps
, “
Self-organized synchronization and voltage stability in networks of synchronous machines
,”
Eur. Phys. J. Spec. Top.
223
(
12
),
2577
2592
(
2014
).
28.
F.
Dorfler
and
F.
Bullo
, “
Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators
,”
SIAM J. Control Optim.
50
(
3
),
1616
1642
(
2012
).
29.
M.
Frasca
,
L.
Fortuna
,
A. S.
Fiore
, and
V.
Latora
, “Analysis of the Italian power grid based on Kuramoto-like model,” in Proceedings of the PHYSCON, Leon, Spain, 5–8 September 2011 (2011).
30.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
(
4
),
485
491
(
2008
).
31.
E.
Montbrió
and
D.
Pazó
, “
Kuramoto model for excitation-inhibition-based oscillations
,”
Phys. Rev. Lett.
120
(
24
),
244101
(
2018
).
32.
Y.
Qin
,
Y.
Kawano
,
O.
Portoles
, and
M.
Cao
, “Partial phase cohesiveness in networks of Kuramoto oscillator networks,” arXiv:1906.01065 (2019).
33.
T.
Menara
,
G.
Baggio
,
D. S.
Bassett
, and
F.
Pasqualetti
, “A framework to control functional connectivity in the human brain,” in 2019 IEEE 58th Conference on Decision and Control (CDC) (IEEE, 2019), pp. 4697–4704.
34.
Y.
Qin
,
M.
Cao
,
B. D. O.
Anderson
,
D. S.
Bassett
, and
F.
Pasqualetti
, “
Mediated remote synchronization of Kuramoto-Sakaguchi oscillators: The number of mediators matters
,”
IEEE Control Syst. Lett.
5
(
3
),
767
772
(
2020
).
35.
D.
Sornette
,
Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools
(
Springer Science & Business Media
,
2006
).
36.
B. D.
Malamud
,
G.
Morein
, and
D. L.
Turcotte
, “
Forest fires: An example of self-organized critical behavior
,”
Science
281
(
5384
),
1840
1842
(
1998
).
37.
D. L.
Turcotte
, “
Self-organized criticality
,”
Rep. Prog. Phys.
62
(
10
),
1377
(
1999
).
38.
P.
Sinha-Ray
and
H. J.
Jensen
, “
Forest-fire models as a bridge between different paradigms in self-organized criticality
,”
Phys. Rev. E
62
(
3
),
3215
(
2000
).
39.
S.
Hergarten
, “
Landslides, sandpiles, and self-organized criticality
,”
Nat. Hazards Earth Syst. Sci.
3
(
6
),
505
514
(
2003
).
40.
J. A.
Bonachela
,
S.
De Franciscis
,
J. J.
Torres
, and
M. A.
Muñoz
, “
Self-organization without conservation: Are neuronal avalanches generically critical?
,”
J. Stat. Mech.: Theory Exp.
2010
(
02
),
P02015
.
41.
J.
Hesse
and
T.
Gross
, “
Self-organized criticality as a fundamental property of neural systems
,”
Front. Syst. Neurosci.
8
,
166
(
2014
).
42.
V.
Priesemann
,
M.
Wibral
,
M.
Valderrama
,
R.
Pröpper
,
M. L.
Van Quyen
,
T.
Geisel
,
J.
Triesch
,
D.
Nikolić
, and
M. H.
J Munk
, “
Spike avalanches in vivo suggest a driven, slightly subcritical brain state
,”
Front. Syst. Neurosci.
8
,
108
(
2014
).
43.
J.
Wilting
and
V.
Priesemann
, “
Inferring collective dynamical states from widely unobserved systems
,”
Nat. Commun.
9
(
1
),
2325
(
2018
).
44.
M.
Yaghoubi
,
T.
de Graaf
,
J. G.
Orlandi
,
F.
Girotto
,
M. A.
Colicos
, and
J.
Davidsen
, “
Neuronal avalanche dynamics indicates different universality classes in neuronal cultures
,”
Sci. Rep.
8
(
1
),
3417
(
2018
).
45.
V.
Priesemann
and
O.
Shriki
, “
Can a time varying external drive give rise to apparent criticality in neural systems?
,”
PLoS Comput. Biol.
14
(
5
),
e1006081
(
2018
).
46.
L. J.
Fosque
,
R. V.
Williams-García
,
J. M.
Beggs
, and
G.
Ortiz
, “
Evidence for quasicritical brain dynamics
,”
Phys. Rev. Lett.
126
(
9
),
098101
(
2021
).
47.
S.-S.
Poil
,
A.
van Ooyen
, and
K.
Linkenkaer-Hansen
, “
Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations
,”
Hum. Brain Mapp.
29
(
7
),
770
777
(
2008
).
48.
E. D.
Gireesh
and
D.
Plenz
, “
Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
21
),
7576
7581
(
2008
).
49.
H.
Yang
,
W. L.
Shew
,
R.
Roy
, and
D.
Plenz
, “
Maximal variability of phase synchrony in cortical networks with neuronal avalanches
,”
J. Neurosci.
32
(
3
),
1061
1072
(
2012
).
50.
B. C.
Coutinho
,
A. V.
Goltsev
,
S. N.
Dorogovtsev
, and
J. F.
F Mendes
, “
Kuramoto model with frequency-degree correlations on complex networks
,”
Phys. Rev. E
87
(
3
),
032106
(
2013
).
51.
Y. L.
Maistrenko
,
A.
Vasylenko
,
O.
Sudakov
,
R.
Levchenko
, and
V. L.
Maistrenko
, “
Cascades of multiheaded chimera states for coupled phase oscillators
,”
Int. J. Bifurcation Chaos
24
(
08
),
1440014
(
2014
).
52.
G.
Ódor
and
B.
Hartmann
, “
Heterogeneity effects in power grid network models
,”
Phys. Rev. E
98
(
2
),
022305
(
2018
).
53.
S. D.
Santo
,
P.
Villegas
,
R.
Burioni
, and
M. A.
Muñoz
, “
Landau–Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
7
),
E1356
E1365
(
2018
).
54.
G.
Ódor
and
B.
Hartmann
, “
Power-law distributions of dynamic cascade failures in power-grid models
,”
Entropy
22
(
6
),
666
(
2020
).
55.
J.
Liang
,
T.
Zhou
, and
C.
Zhou
, “
Hopf bifurcation in mean field explains critical avalanches in excitation-inhibition balanced neuronal networks: A mechanism for multiscale variability
,”
Front. Syst. Neurosci.
14
,
87
(
2020
).
56.
W.
Gilpin
, “
Desynchronization of jammed oscillators by avalanches
,”
Phys. Rev. Res.
3
(
2
),
023206
(
2021
).
57.
V.
Buendía
,
P.
Villegas
,
R.
Burioni
, and
M. A.
Muñoz
, “
Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together
,”
Phys. Rev. Res.
3
(
2
),
023224
(
2021
).
58.
Z.
Olami
,
H. J.
S Feder
, and
K.
Christensen
, “
Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes
,”
Phys. Rev. Lett.
68
(
8
),
1244
(
1992
).
59.
P. A.
Cowie
,
C.
Vanneste
, and
D.
Sornette
, “
Statistical physics model for the spatiotemporal evolution of faults
,”
J. Geophys. Res.: Solid Earth
98
(
B12
),
21809
21821
, (
1993
).
60.
P.
Miltenberger
,
D.
Sornette
, and
C.
Vanneste
, “
Fault self-organization as optimal random paths selected by critical spatiotemporal dynamics of earthquakes
,”
Phys. Rev. Lett.
71
(
21
),
3604
(
1993
).
61.
D.
Sornette
,
P.
Miltenberger
, and
C.
Vanneste
, “
Statistical physics of fault patterns self-organized by repeated earthquakes
,”
Pure Appl. Geophys.
142
(
3
),
491
527
(
1994
).
62.
Á.
Corral
,
C. J.
Pérez
,
A.
Diaz-Guilera
, and
A.
Arenas
, “
Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators
,”
Phys. Rev. Lett.
74
(
1
),
118
(
1995
).
63.
P. A.
Cowie
,
D.
Sornette
, and
C.
Vanneste
, “
Multifractal scaling properties of a growing fault population
,”
Geophys. J. Int.
122
(
2
),
457
469
(
1995
).
64.
M.-L.
Chabanol
and
V.
Hakim
, “
Analysis of a dissipative model of self-organized criticality with random neighbors
,”
Phys. Rev. E
56
(
3
),
R2343
(
1997
).
65.
P.
Piedrahita
,
J.
Borge-Holthoefer
,
Y.
Moreno
, and
A.
Arenas
, “
Modeling self-sustained activity cascades in socio-technical networks
,”
Europhys. Lett.
104
(
4
),
48004
(
2013
).
66.
C. M.
Wray
and
S. R.
Bishop
, “
Cascades on a stochastic pulse-coupled network
,”
Sci. Rep.
4
(
1
),
6355
(
2014
).
67.
Y.
Wang
,
H.
Fan
,
W.
Lin
,
Y.-C.
Lai
, and
X.
Wang
, “
Growth, collapse and self-organized criticality in complex networks
,”
Sci. Rep.
6
(
1
),
24445
(
2016
).
68.
D.
Sornette
, “
Dragon-kings, black swans and the prediction of crises
,”
Int. J. Terraspace Sci. Eng.
2
,
1
18
(
2009
).
69.
D.
Sornette
and
G.
Ouillon
, “
Dragon-kings: Mechanisms, statistical methods and empirical evidence
,”
Eur. Phys. J: Spec. Top.
205
(
1
),
1
26
(
2012
).
70.
T.
Hwa
and
M.
Kardar
, “
Avalanches, hydrodynamics, and discharge events in models of sandpiles
,”
Phys. Rev. A
45
(
10
),
7002
(
1992
).
71.
N. N.
Taleb
,
The Black Swan: The Impact of the Highly Improbable
(
Random House
,
2007
), Vol. 2.
72.
R. K.
Pathria
and
P. D.
Beale
,
Statistical Mechanics
(
Academic Press
,
2011
).
73.
D. J.
Amit
and
V.
Martin-Mayor
,
Field Theory, the Renormalization Group, and Critical Phenomena: Graphs to Computers
(
World Scientific Publishing Company
,
2005
).
74.
D.
Poland
,
S.
Rychkov
, and
A.
Vichi
, “
The conformal bootstrap: Theory, numerical techniques, and applications
,”
Rev. Mod. Phys.
91
(
1
),
317
(
2019
).
75.
S. S.
Manna
, “
Two-state model of self-organized criticality
,”
J. Phys. A: Math. Gen.
24
(
7
),
L363
(
1991
).
76.
V.
Frette
,
K.
Christensen
,
A.
Malthe-Sørenssen
,
J.
Feder
,
T.
Jøssang
, and
P.
Meakin
, “
Avalanche dynamics in a pile of rice
,”
Nature
379
(
6560
),
49
52
(
1996
).
77.
R.
Yao
,
S.
Huang
,
K.
Sun
,
F.
Liu
,
X.
Zhang
, and
S.
Mei
, “
A multi-timescale quasi-dynamic model for simulation of cascading outages
,”
IEEE Trans. Power Syst.
31
(
4
),
3189
3201
(
2016
).
78.
G.
Liu
,
J.
Ning
,
Z.
Tashman
,
V. M.
Venkatasubramanian
, and
P.
Trachian
, “Oscillation monitoring system using synchrophasors,” in 2012 IEEE Power and Energy Society General Meeting (IEEE, 2012), pp. 1–8.
79.
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
, “
Spontaneous synchrony in power-grid networks
,”
Nat. Phys.
9
(
3
),
191
197
(
2013
).
80.
S. M.
Manson
,
A.
Upreti
, and
M. J.
Thompson
, “Case study: Smart automatic synchronization in islanded power systems,” in 2015 IEEE/IAS 51st Industrial & Commercial Power Systems Technical Conference (I&CPS) (IEEE, 2015), pp. 1–10.
81.
P.-A.
Noël
,
C. D.
Brummitt
, and
R. M.
D’Souza
, “
Controlling self-organizing dynamics on networks using models that self-organize
,”
Phys. Rev. Lett.
111
(
7
),
078701
(
2013
).
82.
I.
Dobson
,
B. A.
Carreras
, and
D. E.
Newman
, “A branching process approximation to cascading load-dependent system failure,” in Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 2004 (IEEE, 2004), p. 10.
83.
S.
di Santo
,
R.
Burioni
,
A.
Vezzani
, and
M. A.
Munoz
, “
Self-organized bistability associated with first-order phase transitions
,”
Phys. Rev. Lett.
116
(
24
),
240601
(
2016
).
84.
Y.
Lin
,
K.
Burghardt
,
M.
Rohden
,
P.-A.
Noël
, and
R. M.
D’Souza
, “
Self-organization of dragon king failures
,”
Phys. Rev. E
98
(
2
),
022127
(
2018
).
85.
G.
Mikaberidze
and
R. M.
D’Souza
, Complex Networks 2021: Book of Abstracts (International Conference on Complex Networks and Their Applications, 2021).
You do not currently have access to this content.