It is known that planar discontinuous piecewise linear differential systems separated by a straight line have no limit cycles when both linear differential systems are centers. Here, we study the limit cycles of the planar discontinuous piecewise linear differential systems separated by a circle when both linear differential systems are centers. Our main results show that such discontinuous piecewise differential systems can have zero, one, two, or three limit cycles, but no more limit cycles than three.
Topics
Dynamical systems
REFERENCES
1.
A.
Andronov
, A. M.
Vitt
, and S.
Khaikin
, Theory of Oscillations
(Pergamon Press
, Oxford
, 1966
).2.
J. C.
Artés
, J.
Llibre
, J. C.
Medrado
, and M. A.
Teixeira
, “Piecewise linear differential systems with two real saddles
,” Math. Comput. Simul.
95
, 13
–22
(2014
).3.
D. C.
Braga
and L. F.
Mello
, “Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane
,” Nonlinear Dyn.
73
, 1283
–1288
(2013
). 4.
D. C.
Braga
and L. F.
Mello
, “More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane
,” Int. J. Bifurcation Chaos
24
, 1450056
(2014
). 5.
D. C.
Braga
and L. F.
Mello
, “Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones
,” Electron. J. Differ. Equ.
2015
(1
), 222
. 6.
C.
Buzzi
, C.
Pessoa
, and J.
Torregrosa
, “Piecewise linear perturbations of a linear center
,” Discrete Contin. Dyn. Syst.
33
, 3915
–3936
(2013
). 7.
C.
Christopher
and C.
Li
, Limit Cycles of Differential Equations, Advanced Courses in Mathematics—CRM Barcelona (Birkhäuser Verlag, Basel, 2007).8.
M.
di Bernardo
, C. J.
Budd
, A. R.
Champneys
, and P.
Kowalczyk
, Piecewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences Series Vol. 163 (Springer-Verlag, London, 2008).9.
R. D.
Euzébio
and J.
Llibre
, “On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line
,” J. Math. Anal. Appl.
424
, 475
–486
(2015
). 10.
E.
Freire
, E.
Ponce
, and F.
Torres
, “Canonical discontinuous planar piecewise linear systems
,” SIAM J. Appl. Dyn. Syst.
11
, 181
–211
(2012
). 11.
E.
Freire
, E.
Ponce
, and F.
Torres
, “The discontinuous matching of two planar linear foci can have three nested crossing limit cycles
,” Publ. Mat.
EXTRA
, 221
–253
(2014
). 12.
E.
Freire
, E.
Ponce
, and F.
Torres
, “A general mechanism to generate three limit cycles in planar Filippov systems with two zones
,” Nonlinear Dyn.
78
, 251
–263
(2014
). 13.
M.
Han
and W.
Zhang
, “On Hopf bifurcation in non-smooth planar systems
,” J. Differ. Equ.
248
, 2399
–2416
(2010
). 14.
S. M.
Huan
and X. S.
Yang
, “On the number of limit cycles in general planar piecewise linear systems
,” Discrete Contin. Dyn. Syst. Ser. A
32
, 2147
–2164
(2012
). 15.
S. M.
Huan
and X. S.
Yang
, “Existence of limit cycles in general planar piecewise linear systems of saddle–saddle dynamics
,” Nonlinear Anal.
92
, 82
–95
(2013
). 16.
S. M.
Huan
and X. S.
Yang
, “On the number of limit cycles in general planar piecewise linear systems of node–node types
,” J. Math. Anal. Appl.
411
, 340
–353
(2014
). 17.
Yu.
Ilyashenko
, “Centennial history of Hilbert’s 16th problem
,” Bull. Am. Math. Soc.
39
, 301
–355
(2002
). 18.
J.
Li
, “Hilbert’s 16th problem and bifurcations of planar polynomial vector fields
,” Int. J. Bifurcation Chaos
13
, 47
–106
(2012
). 19.
J.
Llibre
, D. D.
Novaes
, and M. A.
Teixeira
, “Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential center with two zones
,” Int. J. Bifurcation Chaos
25
, 1550144
(2015
). 20.
J.
Llibre
, D. D.
Novaes
, and M. A.
Teixeira
, “Maximum number of limit cycles for certain piecewise linear dynamical systems
,” Nonlinear Dyn.
82
, 1159
–1175
(2015
). 21.
J.
Llibre
, V.
Ordóñez
, and E.
Ponce
, “On the existence and uniqueness of limit cycles in a planar piecewise linear systems without symmetry
,” Nonlinear Anal.: Real World Appl.
14
, 2002
–2012
(2013
). 22.
J.
Llibre
and E.
Ponce
, “Piecewise linear feedback systems with arbitrary number of limit cycles
,” Int. J. Bifurcation Chaos
13
, 895
–904
(2011
). 23.
J.
Llibre
and E.
Ponce
, “Three nested limit cycles in discontinuous piecewise linear differential systems with two zones
,” Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms
19
, 325
–335
(2012
).24.
J.
Llibre
and M. A.
Teixeira
, “Piecewise linear differential systems with only centers can create limit cycles?
,” Nonlinear Dyn.
91
, 249
–255
(2018
). 25.
J.
Llibre
, M. A.
Teixeira
, and J.
Torregrosa
, “Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation
,” Int. J. Bifurcation Chaos
23
, 1350066
(2013
). 26.
J.
Llibre
and X.
Zhang
, “Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve
,” Int. J. Bifurcation Chaos
29
, 1950017
(2019
). 27.
O.
Makarenkov
and J. S. W.
Lamb
, “Dynamics and bifurcations of nonsmooth systems: A survey
,” Physica D
241
, 1826
–1844
(2012
). 28.
D. D.
Novaes
and E.
Ponce
, “A simple solution to the Braga–Mello conjecture
,” Int. J. Bifurcation Chaos
25
, 1550009
(2015
). 29.
S.
Shui
, X.
Zhang
, and J.
Li
, “The qualitative analysis of a class of planar Filippov systems
,” Nonlinear Anal.
73
, 1277
–1288
(2010
). 30.
D. J. W.
Simpson
, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A Vol. 69 (World Scientific, Singapore, 2010).31.
Y.
Yanqian
, Theory of Limit Cycles, Translations of Mathematical Monographs Vol. 66 (American Mathematical Society, Providence, RI, 1986).32.
Z.
Zhang
, T.
Ding
, W.
Huang
, and Z.
Dong
, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs Vol. 101 (American Mathematical Society, Providence, RI, 1992).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.