It is known that planar discontinuous piecewise linear differential systems separated by a straight line have no limit cycles when both linear differential systems are centers. Here, we study the limit cycles of the planar discontinuous piecewise linear differential systems separated by a circle when both linear differential systems are centers. Our main results show that such discontinuous piecewise differential systems can have zero, one, two, or three limit cycles, but no more limit cycles than three.

1.
A.
Andronov
,
A. M.
Vitt
, and
S.
Khaikin
,
Theory of Oscillations
(
Pergamon Press
,
Oxford
,
1966
).
2.
J. C.
Artés
,
J.
Llibre
,
J. C.
Medrado
, and
M. A.
Teixeira
, “
Piecewise linear differential systems with two real saddles
,”
Math. Comput. Simul.
95
,
13
22
(
2014
).
3.
D. C.
Braga
and
L. F.
Mello
, “
Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane
,”
Nonlinear Dyn.
73
,
1283
1288
(
2013
).
4.
D. C.
Braga
and
L. F.
Mello
, “
More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane
,”
Int. J. Bifurcation Chaos
24
,
1450056
(
2014
).
5.
D. C.
Braga
and
L. F.
Mello
, “
Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones
,”
Electron. J. Differ. Equ.
2015
(
1
),
222
.
6.
C.
Buzzi
,
C.
Pessoa
, and
J.
Torregrosa
, “
Piecewise linear perturbations of a linear center
,”
Discrete Contin. Dyn. Syst.
33
,
3915
3936
(
2013
).
7.
C.
Christopher
and
C.
Li
, Limit Cycles of Differential Equations, Advanced Courses in Mathematics—CRM Barcelona (Birkhäuser Verlag, Basel, 2007).
8.
M.
di Bernardo
,
C. J.
Budd
,
A. R.
Champneys
, and
P.
Kowalczyk
, Piecewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences Series Vol. 163 (Springer-Verlag, London, 2008).
9.
R. D.
Euzébio
and
J.
Llibre
, “
On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line
,”
J. Math. Anal. Appl.
424
,
475
486
(
2015
).
10.
E.
Freire
,
E.
Ponce
, and
F.
Torres
, “
Canonical discontinuous planar piecewise linear systems
,”
SIAM J. Appl. Dyn. Syst.
11
,
181
211
(
2012
).
11.
E.
Freire
,
E.
Ponce
, and
F.
Torres
, “
The discontinuous matching of two planar linear foci can have three nested crossing limit cycles
,”
Publ. Mat.
EXTRA
,
221
253
(
2014
).
12.
E.
Freire
,
E.
Ponce
, and
F.
Torres
, “
A general mechanism to generate three limit cycles in planar Filippov systems with two zones
,”
Nonlinear Dyn.
78
,
251
263
(
2014
).
13.
M.
Han
and
W.
Zhang
, “
On Hopf bifurcation in non-smooth planar systems
,”
J. Differ. Equ.
248
,
2399
2416
(
2010
).
14.
S. M.
Huan
and
X. S.
Yang
, “
On the number of limit cycles in general planar piecewise linear systems
,”
Discrete Contin. Dyn. Syst. Ser. A
32
,
2147
2164
(
2012
).
15.
S. M.
Huan
and
X. S.
Yang
, “
Existence of limit cycles in general planar piecewise linear systems of saddle–saddle dynamics
,”
Nonlinear Anal.
92
,
82
95
(
2013
).
16.
S. M.
Huan
and
X. S.
Yang
, “
On the number of limit cycles in general planar piecewise linear systems of node–node types
,”
J. Math. Anal. Appl.
411
,
340
353
(
2014
).
17.
Yu.
Ilyashenko
, “
Centennial history of Hilbert’s 16th problem
,”
Bull. Am. Math. Soc.
39
,
301
355
(
2002
).
18.
J.
Li
, “
Hilbert’s 16th problem and bifurcations of planar polynomial vector fields
,”
Int. J. Bifurcation Chaos
13
,
47
106
(
2012
).
19.
J.
Llibre
,
D. D.
Novaes
, and
M. A.
Teixeira
, “
Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential center with two zones
,”
Int. J. Bifurcation Chaos
25
,
1550144
(
2015
).
20.
J.
Llibre
,
D. D.
Novaes
, and
M. A.
Teixeira
, “
Maximum number of limit cycles for certain piecewise linear dynamical systems
,”
Nonlinear Dyn.
82
,
1159
1175
(
2015
).
21.
J.
Llibre
,
V.
Ordóñez
, and
E.
Ponce
, “
On the existence and uniqueness of limit cycles in a planar piecewise linear systems without symmetry
,”
Nonlinear Anal.: Real World Appl.
14
,
2002
2012
(
2013
).
22.
J.
Llibre
and
E.
Ponce
, “
Piecewise linear feedback systems with arbitrary number of limit cycles
,”
Int. J. Bifurcation Chaos
13
,
895
904
(
2011
).
23.
J.
Llibre
and
E.
Ponce
, “
Three nested limit cycles in discontinuous piecewise linear differential systems with two zones
,”
Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms
19
,
325
335
(
2012
).
24.
J.
Llibre
and
M. A.
Teixeira
, “
Piecewise linear differential systems with only centers can create limit cycles?
,”
Nonlinear Dyn.
91
,
249
255
(
2018
).
25.
J.
Llibre
,
M. A.
Teixeira
, and
J.
Torregrosa
, “
Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation
,”
Int. J. Bifurcation Chaos
23
,
1350066
(
2013
).
26.
J.
Llibre
and
X.
Zhang
, “
Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve
,”
Int. J. Bifurcation Chaos
29
,
1950017
(
2019
).
27.
O.
Makarenkov
and
J. S. W.
Lamb
, “
Dynamics and bifurcations of nonsmooth systems: A survey
,”
Physica D
241
,
1826
1844
(
2012
).
28.
D. D.
Novaes
and
E.
Ponce
, “
A simple solution to the Braga–Mello conjecture
,”
Int. J. Bifurcation Chaos
25
,
1550009
(
2015
).
29.
S.
Shui
,
X.
Zhang
, and
J.
Li
, “
The qualitative analysis of a class of planar Filippov systems
,”
Nonlinear Anal.
73
,
1277
1288
(
2010
).
30.
D. J. W.
Simpson
, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A Vol. 69 (World Scientific, Singapore, 2010).
31.
Y.
Yanqian
, Theory of Limit Cycles, Translations of Mathematical Monographs Vol. 66 (American Mathematical Society, Providence, RI, 1986).
32.
Z.
Zhang
,
T.
Ding
,
W.
Huang
, and
Z.
Dong
, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs Vol. 101 (American Mathematical Society, Providence, RI, 1992).
You do not currently have access to this content.