The collection of all non-degenerate, continuous, two-piece, piecewise-linear maps on R2 can be reduced to a four-parameter family known as the two-dimensional border-collision normal form. We prove that throughout an open region of parameter space, this family has an attractor satisfying Devaney’s definition of chaos. This strengthens the existing results on the robustness of chaos in piecewise-linear maps. We further show that the stable manifold of a saddle fixed point, despite being a one-dimensional object, densely fills an open region containing the attractor. Finally, we identify a heteroclinic bifurcation, not described previously, at which the attractor undergoes a crisis and may be destroyed.

1.
E.
Zeraoulia
and
J.
Sprott
,
Robust Chaos and Its Applications
(
World Scientific
,
Singapore
,
2012
).
2.
S.
van Strien
, “
One-parameter families of smooth interval maps: Density of hyperbolicity and robust chaos
,”
Proc. Am. Math. Soc.
138
,
4443
4446
(
2010
).
3.
A.
Gonchenko
,
S.
Gonchenko
,
A.
Kazakov
, and
A.
Kozlov
, “
Elements of contemporary theory of dynamical chaos: A tutorial. Part I. Pseudohyperbolic attractors
,”
Int. J. Bifurcation Chaos
28
,
1830036
(
2018
).
4.
S.
Gonchenko
,
A.
Kazakov
, and
D.
Turaev
, “
Wild pseudohyperbolic attractor in a four-dimensional Lorenz system
,”
Nonlinearity
34
,
2018
2047
(
2021
).
5.
J.
Guckenheimer
and
R.
Williams
, “
Structural stability of Lorenz attractors
,”
Publ. Math. IHES
50
,
59
72
(
1979
).
6.
W.
Tucker
, “
The Lorenz attractor exists
,”
C. R. Acad. Sci. Paris
328
,
1197
1202
(
1999
).
7.
P.
Glendinning
and
D.
Simpson
, “
Robust chaos and the continuity of attractors
,”
Trans. Math. Appl.
4
,
tnaa002
(
2020
).
8.
J.
Alves
,
A.
Pumariño
, and
E.
Vigil
, “
Statistical stability for multidimensional piecewise expanding maps
,”
Proc. Am. Math. Soc.
145
,
3057
3068
(
2017
).
9.
S.
Banerjee
,
J.
Yorke
, and
C.
Grebogi
, “
Robust chaos
,”
Phys. Rev. Lett.
80
,
3049
3052
(
1998
).
10.
M.
di Bernardo
,
C.
Budd
,
A.
Champneys
, and
P.
Kowalczyk
,
Piecewise-Smooth Dynamical Systems. Theory and Applications
(
Springer-Verlag
,
New York
,
2008
).
11.
D.
Simpson
, “
Border-collision bifurcations in Rn
,”
SIAM Rev.
58
,
177
226
(
2016
).
12.
Z.
Zhusubaliyev
and
E.
Mosekilde
, “
Equilibrium-torus bifurcation in nonsmooth systems
,”
Phys. D
237
,
930
936
(
2008
).
13.
R.
Szalai
and
H.
Osinga
, “
Invariant polygons in systems with grazing-sliding
,”
Chaos
18
,
023121
(
2008
).
14.
H.
Nusse
and
J.
Yorke
, “
Border-collision bifurcations including ‘period two to period three’ for piecewise smooth systems
,”
Phys. D
57
,
39
57
(
1992
).
15.
I.
Ghosh
and
D.
Simpson
, “Renormalisation of the two-dimensional border-collision normal form,” Int. J. Bifurcation Chaos (2021), arXiv:2109.09242.
16.
P.
Glendinning
and
D.
Simpson
, “
A constructive approach to robust chaos using invariant manifolds and expanding cones
,”
Discrete Contin. Dyn. Syst.
41
,
3367
3387
(
2021
).
17.
R.
Devaney
,
An Introduction to Chaotic Dynamical Systems
, 2nd ed. (
Addison-Wesley
,
New York
,
1989
).
18.
M.
Misiurewicz
, “Strange attractors for the Lozi mappings,” in Nonlinear Dynamics, Annals of the New York Academy of Sciences, edited by R. Helleman (Wiley, New York, 1980), pp. 348–358.
19.
E.
Sataev
, “
Ergodic properties of the Belykh map
,”
J. Math. Sci.
95
,
2564
2575
(
1999
).
20.
S.
Hittmeyer
,
B.
Krauskopf
,
H.
Osinga
, and
K.
Shinohara
, “
Existence of blenders in a Hénon-like family: Geometric insights from invariant manifold computations
,”
Nonlinearity
31
,
R239
R267
(
2018
).
21.
C.
Bonatti
,
L.
Díaz
, and
M.
Viana
,
Dynamics Beyond Uniform Hyperbolicity
(
Springer
,
New York
,
2005
).
22.
J.
Banks
,
J.
Brooks
,
G.
Cairns
,
G.
Davis
, and
P.
Stacey
, “
On Devaney’s definition of chaos
,”
Am. Math. Mon.
99
,
332
334
(
2018
).
23.
D.
Simpson
, “
Unfolding homoclinic connections formed by corner intersections in piecewise-smooth maps
,”
Chaos
26
,
073105
(
2016
).
24.
J.
Palis
and
F.
Takens
,
Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations
(
Cambridge University Press
,
New York
,
1993
).
25.
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Phys. D
7
,
181
200
(
1983
).
26.
H.
Osinga
, “
Boundary crisis bifurcation in two parameters
,”
J. Differ. Equ. Appl.
12
,
997
1008
(
2006
).
27.
D.
Veitch
and
P.
Glendinning
, “
Explicit renormalisation in piecewise linear bimodal maps
,”
Phys. D
44
,
149
167
(
1990
).
28.
S.
Smale
, “
Differentiable dynamical systems
,”
Bull. Am. Math. Soc.
73
,
747
817
(
1967
).
29.
K.
Alligood
,
T.
Sauer
, and
J.
Yorke
,
Chaos. An Introduction to Dynamical Systems
(
Springer
,
New York
,
1997
).
30.
J.
Palis
and
W.
de Melo
,
Geometric Theory of Dynamical Systems. An Introduction
(
Springer-Verlag
,
New York
,
1982
).
You do not currently have access to this content.