Using a combination of theory, experiment, and simulation, we revisit the dynamics of two coupled metronomes on a moving platform. Our experiments show that the platform’s motion is damped by a dry friction force of Coulomb type, not the viscous linear friction force that has often been assumed in the past. Prompted by this result, we develop a new mathematical model that builds on previously introduced models but departs from them in its treatment of friction on the platform. We analyze the model by a two-timescale analysis and derive the slow-flow equations that determine its long-term dynamics. The derivation of the slow flow is challenging due to the stick-slip motion of the platform in some parameter regimes. Simulations of the slow flow reveal various kinds of long-term behavior including in-phase and antiphase synchronization of identical metronomes, phase locking and phase drift of non-identical metronomes, and metronome suppression and death. In these latter two states, one or both of the metronomes come to swing at such low amplitude that they no longer engage their escapement mechanisms. We find good agreement between our theory, simulations, and experiments, but stress that our exploration is far from exhaustive. Indeed, much still remains to be learned about the dynamics of coupled metronomes, despite their simplicity and familiarity.

1.
A.
Bahraminasab
, “Synchronisation” see https://www.youtube.com/watch?v=W1TMZASCR-I (2007).
2.
Ikeguchi-Laboratory, “Synchronization of thirty two metronomes,” see https://www.youtube.com/watch?v=JWToUATLGzs (2012).
3.
uclaphysicsvideo, “Spontaneous synchronization,” https://youtu.be/T58lGKREubo (2013).
4.
MythBusters, “N-Sync,” see https://www.youtube.com/watch?v=e-c6S6SdkPo (2014).
5.
Veritasium, “The surprising secret of synchronization,” see https://youtu.be/t-_VPRCtiUg (2021).
6.
J.
Pantaleone
, “
Synchronization of metronomes
,”
Am. J. Phys.
70
,
992
1000
(
2002
).
7.
N. V.
Kuznetsov
,
G. A.
Leonov
,
H.
Nijmeijer
, and
A. Y.
Pogromsky
, “Synchronization of two metronomes,” in Proceedings of the 3rd IFAC Workshop (PSYCO’07), 29-31 August 2007, Saint Petersburg, Russia (Springer, 2007), pp. 49–52.
8.
H.
Ulrichs
,
A.
Mann
, and
U.
Parlitz
, “
Synchronization and chaotic dynamics of coupled mechanical metronomes
,”
Chaos
19
,
043120
(
2009
).
9.
Y.
Wu
,
N.
Wang
,
L.
Li
, and
J.
Xiao
, “
Anti-phase synchronization of two coupled mechanical metronomes
,”
Chaos
22
,
023146
(
2012
).
10.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourriere
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
10563
10567
(
2013
).
11.
G. H.
Goldsztein
,
A. N.
Nadeau
, and
S. H.
Strogatz
, “
Synchronization of clocks and metronomes: A perturbation analysis based on multiple timescales
,”
Chaos
31
,
023109
(
2021
).
12.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer-Verlag
,
1980
).
13.
I. I.
Blekhman
,
Synchronization in Science and Technology
(
American Society of Mechanical Engineers Press
,
1988
).
14.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2001
).
15.
S. H.
Strogatz
,
Sync
(
Hyperion
,
2003
).
16.
C.
Huygens
, Oeuvres Complètes de Christiaan Huygens, edited by M. Nijhoff (Societé Hollandaise des Sciences, 1893), Vol. 5, pp. 241–262.
17.
J.
Ellicott
, “
An account of the influence which two pendulum clocks were observed to have upon each other
,”
Philos. Trans. R. Soc.
41
,
126
128
(
1740
).
18.
J.
Ellicott
, “
Further observations and experiments concerning the two clocks above mentioned
,”
Philos. Trans. R. Soc.
41
,
128
135
(
1740
).
19.
W.
Ellis
, “
On sympathetic influence between clocks
,”
Mon. Not. R. Astron. Soc.
33
,
480
(
1873
).
20.
D.
Korteweg
, “
Les horloges sympathiques de Huygens
,”
Arch. Neerl. Ser. II
11
,
273
295
(
1906
).
21.
M.
Bennett
,
M. F.
Schatz
,
H.
Rockwood
, and
K.
Wiesenfeld
, “
Huygens’s clocks
,”
Proc. R. Soc. A
458
,
563
579
(
2002
).
22.
M.
Senator
, “
Synchronization of two coupled escapement-driven pendulum clocks
,”
J. Sound Vib.
291
,
566
603
(
2006
).
23.
R.
Dilão
, “
Antiphase and in-phase synchronization of nonlinear oscillators: The huygens’s clocks system
,”
Chaos
19
,
023118
(
2009
).
24.
K.
Czolczynski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
, “
Huygens’odd sympathy experiment revisited
,”
Int. J. Bifurcation Chaos
21
,
2047
2056
(
2011
).
25.
V.
Jovanovic
and
S.
Koshkin
, “
Synchronization of huygens’ clocks and the Poincaré method
,”
J. Sound Vib.
331
,
2887
2900
(
2012
).
26.
M.
Kapitaniak
,
K.
Czolczynski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
, “
Synchronization of clocks
,”
Phys. Rep.
517
,
1
69
(
2012
).
27.
J. P.
Ramirez
,
R. H.
Fey
, and
H.
Nijmeijer
, “
Synchronization of weakly nonlinear oscillators with huygens’ coupling
,”
Chaos
23
,
033118
(
2013
).
28.
J. P.
Ramirez
,
K.
Aihara
,
R.
Fey
, and
H.
Nijmeijer
, “
Further understanding of huygens’ coupled clocks: The effect of stiffness
,”
Physica D
270
,
11
19
(
2014
).
29.
J. P.
Ramirez
,
R.
Fey
,
K.
Aihara
, and
H.
Nijmeijer
, “
An improved model for the classical huygens’ experiment on synchronization of pendulum clocks
,”
J. Sound Vib.
333
,
7248
7266
(
2014
).
30.
J. P.
Ramirez
and
H.
Nijmeijer
, “
The Poincaré method: A powerful tool for analyzing synchronization of coupled oscillators
,”
Ind. Math.
27
,
1127
1146
(
2016
).
31.
A. R.
Willms
,
P. M.
Kitanov
, and
W. F.
Langford
, “
Huygens’ clocks revisited
,”
R. Soc. Open Sci.
4
,
170777
(
2017
).
32.
K.
Wiesenfeld
, “
Huygens’s odd sympathy recreated
,”
Soc. Politica
11
,
15
22
(
2017
), see https://socpol.uvvg.ro/huygenss-odd-sympathy-recreated/.
33.
J. P.
Ramirez
and
H.
Nijmeijer
, “
The secret of the synchronized pendulums
,”
Phys. World
33
,
36
(
2020
).
34.
J. G.
Yoder
,
Unrolling Time: Christiaan Huygens and the Mathematization of Nature
(
Cambridge University Press
,
2004
).
35.
Ikeguchi-Laboratory, “Synchronization of one hundred metronomes,” see https://youtu.be/suxu1bmPm2g (2015).
36.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
,
R67
(
2015
).
37.
E.
Schöll
, “
Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics
,”
Eur. Phys. J. Spec. Top.
225
,
891
919
(
2016
).
38.
B. K.
Bera
,
S.
Majhi
,
D.
Ghosh
, and
M.
Perc
, “
Chimera states: Effects of different coupling topologies
,”
Europhys. Lett.
118
,
10001
(
2017
).
39.
O. E.
Omel’chenko
, “
The mathematics behind chimera states
,”
Nonlinearity
31
,
R121
(
2018
).
40.
S. W.
Haugland
, “
The changing notion of chimera states, a critical review
,”
J. Phys.: Complex.
2
,
032001
(
2021
).
41.
H.
Goldstein
,
Classical Mechanics
(
Pearson Education India
,
2011
).
42.
M. H.
Holmes
,
Introduction to Perturbation Methods
(
Springer
,
1995
).
43.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers
(
Springer
,
1999
).
44.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Addison-Wesley
,
1994
).

Supplementary Material

You do not currently have access to this content.