Discontinuity and non-smoothness of system displacement and velocity caused by mechanical impact make the related research on dynamics of vibro-impact systems very difficult and complex. For the sake of bypassing the problems resulting from impact to some extent, Zhuravlev and Ivanov coordinate transformations were proposed, which can effectively convert the vibro-impact system to one without impact terms. In this paper, a more direct and universal transformation for general bilateral rigid vibro-impact systems is proposed. It is inspired by the main technique of Ivanov transformation, which makes the trajectories remain continuous in an auxiliary phase space. It can be directly applied to common vibro-impact systems, whether the positions of barriers are symmetrical or the restitution coefficients of barriers on both sides are consistent. In particular, this method can also be applied to the unilateral vibro-impact system. Validity of the proposed methodology is examined by means of case studies.

1.
G. F.
Li
,
W. C.
Ding
, and
S. P.
Wu
, “
Global behavior of a vibro-impact system with multiple nonsmooth mechanical factors
,”
J. Comput. Nonlinear Dyn.
12
,
061004
(
2017
).
2.
A.
Colombo
and
F.
Dercole
, “
Discontinuity induced bifurcations of nonhyperbolic cycles in nonsmooth systems
,”
SIAM J. Appl. Dyn. Syst.
9
,
62
83
(
2010
).
3.
G. L.
Li
,
Y.
Yue
, and
J. H.
Xie
, “
Strange nonchaotic attractors in a nonsmooth dynamical system
,”
Commun. Nonlinear Sci. Numer. Simul.
78
,
104858
(
2019
).
4.
P.
Kumar
,
S.
Narayanan
, and
S.
Gupta
, “
Stochastic bifurcations in a vibro-impact Duffing-van der Pol oscillator
,”
Nonlinear Dyn.
85
,
439
452
(
2016
).
5.
J. J.
Thomsen
and
A.
Fidlin
, “
Near-elastic vibro-impact analysis by discontinuous transformations and averaging
,”
J. Sound Vib.
311
,
386
407
(
2008
).
6.
V. I.
Babitsky
and
V. L.
Krupenin
,
Vibration of Strongly Nonlinear Discontinuous Systems
(
Springer Science & Business Media
,
2001
).
7.
R. A.
Ibrahim
, “
Recent advances in vibro-impact dynamics and collision of ocean vessels
,”
J. Sound Vib.
333
,
5900
5916
(
2014
).
8.
R. A.
Ibrahim
,
Vibro-Impact Dynamics: Modeling, Mapping and Applications
(
Springer Science & Business Media
,
2009
), Vol. 43.
9.
W.
Xu
,
J. Q.
Feng
, and
H. W.
Rong
, “
Melnikov’s method for a general nonlinear vibro-impact oscillator
,”
Nonlinear Anal. Theory Methods Appl.
71
,
418
426
(
2009
).
10.
M.
Di Bernardo
,
A.
Nordmark
, and
G.
Olivar
, “
Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems
,”
Physica D
237
,
119
136
(
2008
).
11.
D. J. W.
Simpson
and
R.
Kuske
, “
The influence of localized randomness on regular grazing bifurcations with applications to impacting dynamics
,”
J. Vib. Control
24
,
407
426
(
2018
).
12.
G. W.
Luo
,
Y. D.
Chu
,
Y. L.
Zhang
, and
J. G.
Zhang
, “
Double Neimark–Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops
,”
J. Vib. Control
298
,
154
179
(
2006
).
13.
D. J.
Wagg
and
S. R.
Bishop
, “
Chatter, sticking and chaotic impacting motion in a two-degree of freedom impact oscillator
,”
Int. J. Bifurcation Chaos
11
,
57
71
(
2001
).
14.
O.
Makarenkov
and
J. S. W.
Lamb
, “
Dynamics and bifurcations of nonsmooth systems: A survey
,”
Physica D
241
,
1826
1844
(
2012
).
15.
M. F.
Dimentberg
and
D. V.
Iourtchenko
, “
Random vibrations with impacts: A review
,”
Nonlinear Dyn.
36
,
229
254
(
2004
).
16.
V. F.
Zhuravlev
, “
A method for analyzing vibration-impact systems by means of special functions
,”
Mech. Solids
11
,
23
27
(
1976
).
17.
A. P.
Ivanov
, “
Impact oscillations: Linear theory of stability and bifurcations
,”
J. Sound Vib.
178
,
361
378
(
1994
).
18.
M. F.
Dimentberg
and
A. I.
Menyailov
, “
Response of a single-mass vibroimpact system to white-noise random excitation
,”
Z. Angew. Math. Mech.
59
,
709
716
(
1979
).
19.
M.
Dimentberg
, “
Pseudolinear vibroimpact systems: Non-white random excitation
,”
Nonlinear Dyn.
9
,
327
332
(
1996
).
20.
N. S.
Namachchivaya
and
J. H.
Park
, “
Stochastic dynamics of impact oscillators
,”
J. Appl. Mech.
72
,
862
870
(
2005
).
21.
H. W.
Rong
,
X. D.
Wang
,
W.
Xu
, and
T.
Fang
, “
Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations
,”
Int. J. Nonlinear Mech.
45
,
474
481
(
2010
).
22.
C.
Li
,
W.
Xu
,
J. Q.
Feng
, and
L.
Wang
, “
Response probability density functions of Duffing–van der Pol vibro-impact system under correlated Gaussian white noise excitations
,”
Physica A
392
,
1269
1279
(
2013
).
23.
M.
Su
,
W.
Xu
, and
G. D.
Yang
, “
Stochastic response and stability of system with friction and a rigid barrier
,”
Mech. Syst. Sig. Process.
132
,
748
761
(
2019
).
24.
Y. H.
Sun
,
Y. G.
Yang
,
L.
Hong
, and
W.
Xu
, “
Stochastic bifurcations of a fractional-order vibro-impact oscillator subjected to colored noise excitation
,”
Int. J. Bifurcation Chaos
31
,
2150177
(
2021
).
25.
M. F.
Dimentberg
,
O.
Gaidai
, and
A.
Naess
, “
Random vibrations with strongly inelastic impacts: Response pdf by the path integration method
,”
Int. J. Nonlinear Mech.
44
,
791
796
(
2009
).
26.
Z. C.
Ren
,
W.
Xu
, and
D. L.
Wang
, “
Dynamic and first passage analysis of ship roll motion with inelastic impacts via path integration method
,”
Nonlinear Dyn.
97
,
391
402
(
2019
).
27.
Z. C.
Ren
,
W.
Xu
, and
S.
Zhang
, “
Reliability analysis of nonlinear vibro-impact systems with both randomly fluctuating restoring and damping terms
,”
Commun. Nonlinear Sci. Numer. Simul.
82
,
105087
(
2020
).
28.
L. C.
Chen
,
J. M.
Qian
,
H. S.
Zhu
, and
J. Q.
Sun
, “
The closed-form stationary probability distribution of the stochastically excited vibro-impact oscillators
,”
J. Sound Vib.
439
,
260
270
(
2019
).
29.
P.
Kumar
,
S.
Narayanan
, and
S.
Gupta
, “
Bifurcation analysis of a stochastically excited vibro-impact Duffing-van der Pol oscillator with bilateral rigid barriers
,”
Int. J. Mech. Sci.
127
,
103
117
(
2017
).
30.
L. C.
Chen
,
H. S.
Zhu
, and
J. Q.
Sun
, “
Novel method for random vibration analysis of single-degree-of-freedom vibroimpact systems with bilateral barriers
,”
Appl. Math. Mech.
40
,
1759
1776
(
2019
).
31.
M.
Su
,
W.
Xu
, and
G. D.
Yang
, “
Response analysis of van der pol vibro-impact system with Coulomb friction under Gaussian white noise
,”
Int. J. Bifurcation Chaos
28
,
1830043
(
2018
).
You do not currently have access to this content.