This paper contributes to studying the bifurcations of closed invariant curves in piecewise-smooth maps. Specifically, we discuss a border collision bifurcation of a repelling resonant closed invariant curve (a repelling saddle-node connection) colliding with the border by a point of the repelling cycle. As a result, this cycle becomes attracting and the curve is destroyed, while a new repelling closed invariant curve appears (not in a neighborhood of the previously existing invariant curve), being associated with quasiperiodic dynamics. This leads to a global restructuring of the phase portrait since both curves mentioned above belong to basin boundaries of coexisting attractors.

1.
N. N.
Leonov
, “
On a pointwise mapping of a line into itself
,”
Radiofisika
2
,
942
956
(
1959
) (in Russian).
2.
M. I.
Feigin
, “
Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems
,” [Prikl. Math. Mekh. 34(5),
861
869
(
1970
)];
Appl. Math. Mech.
34
(5), 822–830 (1970).
3.
F.
Peterka
, “
Laws of impact motion of mechanical systems with one degree of freedom. Part I: Theoretical analysis of n-multiple (1/n)-impact motions
,”
Acta Technica CSAV
4
,
462
473
(
1974
).
4.
A. B.
Nordmark
, “
Non-periodic motion caused by grazing incidence in an impact oscillator
,”
J. Sound Vib.
145
,
279
297
(
1991
).
5.
H. E.
Nusse
and
J. A.
Yorke
, “
Border-collision bifurcations including ‘period two to period three’ bifurcation for piecewise smooth systems
,”
Physica D
57
,
39
57
(
1992
).
6.
C.
Mira
,
C.
Rauzy
,
Yu.
Maistrenko
, and
I.
Sushko
, “
Some properties of a two-dimensional piecewise-linear noninvertible map
,”
Int. J. Bifurcation Chaos
6
,
2299
2319
(
1996
).
7.
S.
Banerjee
and
C.
Grebogi
, “
Border collision bifurcation in two-dimensional piecewise smooth maps
,”
Phys. Rev. E
59
,
4052
4061
(
1999
).
8.
M.
di Bernardo
,
M. I.
Feigin
,
S. J.
Hogan
, and
M. E.
Homer
, “
Local analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems
,”
Chaos Solitons Fractals
10
,
1881
1908
(
1999
).
9.
S.
Banerjee
and
G. C.
Verghese
,
Nonlinear Phenomena in Power Electronics—Attractors, Bifurcations, Chaos, and Nonlinear Control
(
IEEE Press
,
2001
).
10.
Zh.
Zhusubaliyev
and
E.
Mosekilde
,
Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems
, Nonlinear Science A Vol. 44 (
World Scientific
,
2003
).
11.
I.
Sushko
,
A.
Agliari
, and
L.
Gardini
, “
Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves
,”
Chaos Solitons Fractals
29
,
756
770
(
2006
).
12.
M.
di Bernardo
,
C. J.
Budd
,
A. R.
Champneys
, and
P.
Kowalczyk
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
, Applied Mathematical Sciences Vol. 163 (
Springer
,
2008
).
13.
D.
Simpson
, “
Border-collision bifurcations in Rn
,”
SIAM Rev.
58
,
177
226
(
2016
).
14.
V.
Avrutin
,
L.
Gardini
,
I.
Sushko
, and
F.
Tramontana
,
Continuous and Discontinuous Piecewise-Smooth One-dimensional Maps: Invariant Sets and Bifurcation Structures
, Nonlinear Science, Series A Vol. 95 (
World Scientific
,
2019
).
15.
V.
Avrutin
and
Zh.
Zhusubaliyev
, “
Nested closed invariant curves
,”
Int. J. Bifurcation Chaos
29
,
1930017
(
2019
).
16.
T.
Kapitaniak
and
Yu.
Maistrenko
, “
Multiple choice bifurcations as a source of unpredictability in dynamical systems
,”
Phys. Rev. E
58
,
5161
5163
(
1998
).
17.
M.
Dutta
,
H.
Nusse
,
E.
Ott
,
J. A.
Yorke
, and
G.
Yuan
, “
Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems
,”
Phys. Rev. Lett.
83
,
4281
4284
(
1999
).
18.
V.
Avrutin
,
M.
Schanz
, and
S.
Banerjee
, “
Occurrence of multiple attractor bifurcations in the two-dimensional piecewise linear normal form map
,”
Nonlinear Dyn.
67
,
293
307
(
2011
).
19.
D.
Simpson
, “
Grazing-sliding bifurcations creating infinitely many attractors
,”
Int. J. Bifurcation Chaos
27
,
1730042
(
2017
).
20.
V.
Avrutin
,
A.
Panchuk
, and
I.
Sushko
, “
Border collision bifurcations of chaotic attractors in one-dimensional maps with multiple discontinuities
,”
Proc. R. Soc. A
477
,
20210432
(
2021
).
21.
V.
Afraimovich
and
L.
Shilnikov
, “
Invariant two-dimensional tori, their breakdown and stochasticity
,”
Am. Math. Soc. Transl.
149
,
201
212
(
1991
); available at http://www.ams.org/books/trans2/149/trans2149-endmatter.pdf.
22.
J.
Curry
and
J. A.
Yorke
, “A transition from Hopf bifurcation to chaos: Computer experiments with maps in R2,” in The Structure of Attractors in Dynamical Systems, Springer Lecture Notes in Mathematics Vol. 668, edited by J. Martin, N. Markley, and W. Perrizo (Springer, Berlin, 1978), pp. 48–66.
23.
D.
Aronson
,
M.
Chory
,
G.
Hall
, and
R.
McGehee
, “
Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study
,”
Commun. Math. Phys.
83
,
303
354
(
1982
).
24.
H.
Broer
,
C.
Simo
, and
J.
Tatjer
, “
Towards global models near homoclinic tangencies of dissipative diffeomorphisms
,”
Nonlinearity
11
,
667
770
(
1998
).
25.
C.
Mira
,
L.
Gardini
,
A.
Barugola
, and
J.-C.
Cathala
,
Chaotic Dynamics in Two-Dimensional Noninvertible Maps
, World Scientific Series on Nonlinear Science Vol. 20 (
World Scientific
,
New Jersey
,
1996
).
26.
C.
Frouzakis
,
L.
Gardini
,
I.
Kevrekidis
,
G.
Millerioux
, and
C.
Mira
, “
On some properties of invariant sets of two-dimensional noninvertible maps
,”
Int. J. Bifurcation Chaos
7
,
1167
1194
(
1997
).
27.
V.
Maistrenko
,
Yu.
Maistrenko
, and
E.
Mosekilde
, “
Torus breakdown in noninvertible maps
,”
Phys. Rev. E
67
,
046215
(
2003
).
28.
C.
Frouzakis
,
I.
Kevrekidis
, and
B.
Peckham
, “
A route to computational chaos revisited: Noninvertibility and the breakup of an invariant circle
,”
Physica D
177
,
101
121
(
2003
).
29.
A.
Pumariño
and
J.
Tatjer
, “
Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms
,”
Nonlinearity
19
,
2833
2852
(
2006
).
30.
E.
Lorenz
, “
Computational chaos—a prelude to computational instability
,”
Physica D
35
,
299
317
(
1989
).
31.
Zh.
Zhusubaliyev
,
E.
Soukhoterin
, and
E.
Mosekilde
, “
Border-collision bifurcations on a two-dimensional torus
,”
Chaos Solitons Fractals
13
,
1889
1915
(
2002
).
32.
H.
Dankowicz
,
P.
Piiroinen
, and
A.
Nordmark
, “
Low-velocity impacts of quasiperiodic oscillations
,”
Chaos Solitons Fractals
14
,
241
255
(
2002
).
33.
Zh.
Zhusubaliyev
,
E.
Mosekilde
,
S. M.
Maity
,
S.
Mohanan
, and
S.
Banerjee
, “
Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation
,”
Chaos
16
,
023122
(
2006
).
34.
A.
Agliari
,
L.
Gardini
, and
T.
Puu
, “
Global bifurcations in duopoly when the Cournot point is destabilized via a subcritical Neimark bifurcation
,”
Int. Game Theory Rev.
8
,
1
20
(
2006
).
35.
I.
Sushko
and
L.
Gardini
, “
Center bifurcation for a two-dimensional border-collision normal form
,”
Int. J. Bifurcation Chaos
18
,
1029
1050
(
2008
).
36.
J. W.
Milnor
, “
On the concept of attractor
,”
Commun. Math. Phys.
99
,
177
195
(
1985
).
37.
Zh.
Zhusubaliyev
and
E.
Mosekilde
, “
Multistability and hidden attractors in a multilevel DC/DC converter
,”
Math. Comput. Simul.
109
,
32
45
(
2015
).
38.
L.
Shilnikov
,
A.
Shilnikov
,
D.
Turaev
, and
L.
Chua
,
Methods of Qualitative Theory in Nonlinear Dynamics. Part I
(
World Scientific
,
Singapore
,
1998
).
You do not currently have access to this content.