This paper contributes to studying the bifurcations of closed invariant curves in piecewise-smooth maps. Specifically, we discuss a border collision bifurcation of a repelling resonant closed invariant curve (a repelling saddle-node connection) colliding with the border by a point of the repelling cycle. As a result, this cycle becomes attracting and the curve is destroyed, while a new repelling closed invariant curve appears (not in a neighborhood of the previously existing invariant curve), being associated with quasiperiodic dynamics. This leads to a global restructuring of the phase portrait since both curves mentioned above belong to basin boundaries of coexisting attractors.
REFERENCES
1.
N. N.
Leonov
, “On a pointwise mapping of a line into itself
,” Radiofisika
2
, 942
–956
(1959
) (in Russian).2.
M. I.
Feigin
, “Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems
,” [Prikl. Math. Mekh. 34(5), 861
–869
(1970
)]; Appl. Math. Mech.
34
(5), 822–830 (1970).3.
F.
Peterka
, “Laws of impact motion of mechanical systems with one degree of freedom. Part I: Theoretical analysis of -multiple ()-impact motions
,” Acta Technica CSAV
4
, 462
–473
(1974
).4.
A. B.
Nordmark
, “Non-periodic motion caused by grazing incidence in an impact oscillator
,” J. Sound Vib.
145
, 279
–297
(1991
). 5.
H. E.
Nusse
and J. A.
Yorke
, “Border-collision bifurcations including ‘period two to period three’ bifurcation for piecewise smooth systems
,” Physica D
57
, 39
–57
(1992
). 6.
C.
Mira
, C.
Rauzy
, Yu.
Maistrenko
, and I.
Sushko
, “Some properties of a two-dimensional piecewise-linear noninvertible map
,” Int. J. Bifurcation Chaos
6
, 2299
–2319
(1996
). 7.
S.
Banerjee
and C.
Grebogi
, “Border collision bifurcation in two-dimensional piecewise smooth maps
,” Phys. Rev. E
59
, 4052
–4061
(1999
). 8.
M.
di Bernardo
, M. I.
Feigin
, S. J.
Hogan
, and M. E.
Homer
, “Local analysis of C-bifurcations in -dimensional piecewise smooth dynamical systems
,” Chaos Solitons Fractals
10
, 1881
–1908
(1999
). 9.
S.
Banerjee
and G. C.
Verghese
, Nonlinear Phenomena in Power Electronics—Attractors, Bifurcations, Chaos, and Nonlinear Control
(IEEE Press
, 2001
).10.
Zh.
Zhusubaliyev
and E.
Mosekilde
, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems
, Nonlinear Science A Vol. 44 (World Scientific
, 2003
).11.
I.
Sushko
, A.
Agliari
, and L.
Gardini
, “Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves
,” Chaos Solitons Fractals
29
, 756
–770
(2006
). 12.
M.
di Bernardo
, C. J.
Budd
, A. R.
Champneys
, and P.
Kowalczyk
, Piecewise-Smooth Dynamical Systems: Theory and Applications
, Applied Mathematical Sciences Vol. 163 (Springer
, 2008
).13.
D.
Simpson
, “Border-collision bifurcations in
,” SIAM Rev.
58
, 177
–226
(2016
). 14.
V.
Avrutin
, L.
Gardini
, I.
Sushko
, and F.
Tramontana
, Continuous and Discontinuous Piecewise-Smooth One-dimensional Maps: Invariant Sets and Bifurcation Structures
, Nonlinear Science, Series A Vol. 95 (World Scientific
, 2019
).15.
V.
Avrutin
and Zh.
Zhusubaliyev
, “Nested closed invariant curves
,” Int. J. Bifurcation Chaos
29
, 1930017
(2019
). 16.
T.
Kapitaniak
and Yu.
Maistrenko
, “Multiple choice bifurcations as a source of unpredictability in dynamical systems
,” Phys. Rev. E
58
, 5161
–5163
(1998
). 17.
M.
Dutta
, H.
Nusse
, E.
Ott
, J. A.
Yorke
, and G.
Yuan
, “Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems
,” Phys. Rev. Lett.
83
, 4281
–4284
(1999
). 18.
V.
Avrutin
, M.
Schanz
, and S.
Banerjee
, “Occurrence of multiple attractor bifurcations in the two-dimensional piecewise linear normal form map
,” Nonlinear Dyn.
67
, 293
–307
(2011
). 19.
D.
Simpson
, “Grazing-sliding bifurcations creating infinitely many attractors
,” Int. J. Bifurcation Chaos
27
, 1730042
(2017
). 20.
V.
Avrutin
, A.
Panchuk
, and I.
Sushko
, “Border collision bifurcations of chaotic attractors in one-dimensional maps with multiple discontinuities
,” Proc. R. Soc. A
477
, 20210432
(2021
). 21.
V.
Afraimovich
and L.
Shilnikov
, “Invariant two-dimensional tori, their breakdown and stochasticity
,” Am. Math. Soc. Transl.
149
, 201
–212
(1991
); available at http://www.ams.org/books/trans2/149/trans2149-endmatter.pdf.22.
J.
Curry
and J. A.
Yorke
, “A transition from Hopf bifurcation to chaos: Computer experiments with maps in ,” in The Structure of Attractors in Dynamical Systems, Springer Lecture Notes in Mathematics Vol. 668, edited by J. Martin, N. Markley, and W. Perrizo (Springer, Berlin, 1978), pp. 48–66.23.
D.
Aronson
, M.
Chory
, G.
Hall
, and R.
McGehee
, “Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study
,” Commun. Math. Phys.
83
, 303
–354
(1982
). 24.
H.
Broer
, C.
Simo
, and J.
Tatjer
, “Towards global models near homoclinic tangencies of dissipative diffeomorphisms
,” Nonlinearity
11
, 667
–770
(1998
). 25.
C.
Mira
, L.
Gardini
, A.
Barugola
, and J.-C.
Cathala
, Chaotic Dynamics in Two-Dimensional Noninvertible Maps
, World Scientific Series on Nonlinear Science Vol. 20 (World Scientific
, New Jersey
, 1996
).26.
C.
Frouzakis
, L.
Gardini
, I.
Kevrekidis
, G.
Millerioux
, and C.
Mira
, “On some properties of invariant sets of two-dimensional noninvertible maps
,” Int. J. Bifurcation Chaos
7
, 1167
–1194
(1997
). 27.
V.
Maistrenko
, Yu.
Maistrenko
, and E.
Mosekilde
, “Torus breakdown in noninvertible maps
,” Phys. Rev. E
67
, 046215
(2003
). 28.
C.
Frouzakis
, I.
Kevrekidis
, and B.
Peckham
, “A route to computational chaos revisited: Noninvertibility and the breakup of an invariant circle
,” Physica D
177
, 101
–121
(2003
). 29.
A.
Pumariño
and J.
Tatjer
, “Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms
,” Nonlinearity
19
, 2833
–2852
(2006
). 30.
E.
Lorenz
, “Computational chaos—a prelude to computational instability
,” Physica D
35
, 299
–317
(1989
). 31.
Zh.
Zhusubaliyev
, E.
Soukhoterin
, and E.
Mosekilde
, “Border-collision bifurcations on a two-dimensional torus
,” Chaos Solitons Fractals
13
, 1889
–1915
(2002
). 32.
H.
Dankowicz
, P.
Piiroinen
, and A.
Nordmark
, “Low-velocity impacts of quasiperiodic oscillations
,” Chaos Solitons Fractals
14
, 241
–255
(2002
). 33.
Zh.
Zhusubaliyev
, E.
Mosekilde
, S. M.
Maity
, S.
Mohanan
, and S.
Banerjee
, “Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation
,” Chaos
16
, 023122
(2006
). 34.
A.
Agliari
, L.
Gardini
, and T.
Puu
, “Global bifurcations in duopoly when the Cournot point is destabilized via a subcritical Neimark bifurcation
,” Int. Game Theory Rev.
8
, 1
–20
(2006
). 35.
I.
Sushko
and L.
Gardini
, “Center bifurcation for a two-dimensional border-collision normal form
,” Int. J. Bifurcation Chaos
18
, 1029
–1050
(2008
). 36.
J. W.
Milnor
, “On the concept of attractor
,” Commun. Math. Phys.
99
, 177
–195
(1985
). 37.
Zh.
Zhusubaliyev
and E.
Mosekilde
, “Multistability and hidden attractors in a multilevel DC/DC converter
,” Math. Comput. Simul.
109
, 32
–45
(2015
). 38.
L.
Shilnikov
, A.
Shilnikov
, D.
Turaev
, and L.
Chua
, Methods of Qualitative Theory in Nonlinear Dynamics. Part I
(World Scientific
, Singapore
, 1998
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.