Over the last decade, the release of Wolbachia-infected Aedes aegypti into the natural habitat of this mosquito species has become the most sustainable and long-lasting technique to prevent and control vector-borne diseases, such as dengue, zika, or chikungunya. However, the limited resources to generate such mosquitoes and their effective distribution in large areas dominated by the Aedes aegypti vector represent a challenge for policymakers. Here, we introduce a mathematical framework for the spread of dengue in which competition between wild and Wolbachia-infected mosquitoes, the cross-contagion patterns between humans and vectors, the heterogeneous distribution of the human population in different areas, and the mobility flows between them are combined. Our framework allows us to identify the most effective areas for the release of Wolbachia-infected mosquitoes to achieve a large decrease in the global dengue prevalence.

1.
See https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases for “Vector-borne diseases” (last accessed November 25, 2021).
2.
J. D.
Stanaway
,
D. S.
Shepard
,
E. A.
Undurraga
,
Y. A.
Halasa
,
L. E.
Coffeng
,
O. J.
Brady
,
S. I.
Hay
,
N.
Bedi
,
I. M.
Bensenor
,
C. A.
Castañeda-Orjuela
et al., “
The global burden of dengue: An analysis from the global burden of disease study 2013
,”
Lancet Infect. Dis.
16
,
712
723
(
2016
).
3.
S.
Bhatt
,
P. W.
Gething
,
O. J.
Brady
,
J. P.
Messina
,
A. W.
Farlow
,
C. L.
Moyes
,
J. M.
Drake
,
J. S.
Brownstein
,
A. G.
Hoen
,
O.
Sankoh
et al., “
The global distribution and burden of dengue
,”
Nature
496
,
504
507
(
2013
).
4.
S.
Swaminathan
and
N.
Khanna
, “
Dengue vaccine development: Global and Indian scenarios
,”
Int. J. Infect. Dis.
84
,
S80
S86
(
2019
).
5.
C.
Caminade
,
K. M.
McIntyre
, and
A. E.
Jones
, “
Impact of recent and future climate change on vector-borne diseases
,”
Ann. N. Y. Acad. Sci.
1436
,
157
(
2019
).
6.
I. R.
Montella
,
A. J.
Martins
,
P. F.
Viana-Medeiros
,
J. B. P.
Lima
,
I. A.
Braga
, and
D.
Valle
, “
Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004
,”
Am. J. Trop. Med. Hyg.
77
,
467
477
(
2007
).
7.
L. A.
Moreira
,
I.
Iturbe-Ormaetxe
,
J. A.
Jeffery
,
G.
Lu
,
A. T.
Pyke
,
L. M.
Hedges
,
B. C.
Rocha
,
S.
Hall-Mendelin
,
A.
Day
,
M.
Riegler
et al., “
A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium
,”
Cell
139
,
1268
1278
(
2009
).
8.
T.
Walker
,
P.
Johnson
,
L.
Moreira
,
I.
Iturbe-Ormaetxe
,
F.
Frentiu
,
C.
McMeniman
,
Y. S.
Leong
,
Y.
Dong
,
J.
Axford
,
P.
Kriesner
et al., “
The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations
,”
Nature
476
,
450
453
(
2011
).
9.
A. A.
Hoffmann
,
S. L.
O’Neill
, and
J. H.
Werren
,
Influential Passengers: Inherited Microorganisms and Arthropod Reproduction
(
Oxford University Press
,
1997
).
10.
M.
Turelli
and
A. A.
Hoffmann
, “
Rapid spread of an inherited incompatibility factor in California Drosophila
,”
Nature
353
,
440
442
(
1991
).
11.
J.
Gómez-Gardeñes
,
D.
Soriano-Panos
, and
A.
Arenas
, “
Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in networks
,”
Nat. Phys.
14
,
391
395
(
2018
).
12.
D.
Soriano-Paños
,
L.
Lotero
,
A.
Arenas
, and
J.
Gómez-Gardeñes
, “
Spreading processes in multiplex metapopulations containing different mobility networks
,”
Phys. Rev. X
8
,
031039
(
2018
).
13.
D.
Soriano-Paños
,
J. H.
Arias-Castro
,
A.
Reyna-Lara
,
H. J.
Martínez
,
S.
Meloni
, and
J.
Gómez-Gardeñes
, “
Vector-borne epidemics driven by human mobility
,”
Phys. Rev. Res.
2
,
013312
(
2020
).
14.
B. W.
Alto
and
S. A.
Juliano
, “
Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory
,”
J. Med. Entomol.
38
,
548
556
(
2001
).
15.
M. M.
Sowilem
,
H. A.
Kamal
,
E. I.
Khater
et al., “
Life table characteristics of Aedes aegypti (Diptera: Culicidae) from Saudi Arabia
,”
Trop. Biomed.
30
,
301
14
(
2013
).
16.
T.
Ruang-Areerate
and
P.
Kittayapong
, “
Wolbachia transinfection in Aedes aegypti: A potential gene driver of dengue vectors
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
12534
12539
(
2006
).
17.
M. S.
Blagrove
,
C.
Arias-Goeta
,
A.-B.
Failloux
, and
S. P.
Sinkins
, “
Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
255
260
(
2012
).
18.
D.
Vicencio
,
O.
Vasilieva
, and
P.
Gajardo
, “Monotonicity properties arising in a simple model of Wolbachia invasion for wild mosquito populations,” arXiv:2011.10501 (2020).
19.
C. C.
Jansen
and
N. W.
Beebe
, “
The dengue vector Aedes aegypti: What comes next
,”
Microbes Infect.
12
,
272
279
(
2010
).
20.
M. J.
Turell
,
D. J.
Dohm
,
M. R.
Sardelis
,
M. L.
O’guinn
,
T. G.
Andreadis
, and
J. A.
Blow
, “
An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus
,”
J. Med. Entomol.
42
,
57
62
(
2005
).
21.
G.
Escobar-Morales
,
Cali En Cifras 2013
(
Departamento Administrativo de Planeación
,
2013
).
22.
C.
Chastel
, “
Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions
,”
Front. Physiol.
3
,
70
(
2012
).
23.
V.
Duong
,
S.
Ly
,
P.
Lorn Try
,
A.
Tuiskunen
,
S.
Ong
,
N.
Chroeung
,
A.
Lundkvist
,
I.
Leparc-Goffart
,
V.
Deubel
,
S.
Vong
et al., “
Clinical and virological factors influencing the performance of a NS1 antigen-capture assay and potential use as a marker of dengue disease severity
,”
PLoS Neglected Trop. Dis.
5
,
e1244
(
2011
).
24.
Public Health Secretary of Santiago de Cali,
Análisis de Situación Integrada de Salud
(
Secretaría de Salud Pública Municipal de Cali
,
2016
).
25.
See https://www.ecdc.europa.eu/en/dengue-fever/facts for “Factsheet about dengue” (last accessed November 25, 2021).
26.
V. H.
Ferreira-de Lima
and
T. N.
Lima-Camara
, “
Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: A systematic review
,”
Parasites Vectors
11
,
1
8
(
2018
).
27.
A.
Utarini
,
C.
Indriani
,
R. A.
Ahmad
,
W.
Tantowijoyo
,
E.
Arguni
,
M. R.
Ansari
,
E.
Supriyati
,
D. S.
Wardana
,
Y.
Meitika
,
I.
Ernesia
,
I.
Nurhayati
,
E.
Prabowo
,
B.
Andari
,
B. R.
Green
,
L.
Hodgson
,
Z.
Cutcher
,
E.
Rancès
,
P. A.
Ryan
,
S. L.
O’Neill
,
S. M.
Dufault
,
S. K.
Tanamas
,
N. P.
Jewell
,
K. L.
Anders
, and
C. P.
Simmons
, “
Efficacy of Wolbachia-infected mosquito deployments for the control of dengue
,”
N. Engl. J. Med.
384
,
2177
2186
(
2021
).
You do not currently have access to this content.