Unstable periodic orbits (UPOs) are a valuable tool for studying chaotic dynamical systems, as they allow one to distill their dynamical structure. We consider here the Lorenz 1963 model with the classic parameters’ value. We investigate how a chaotic trajectory can be approximated using a complete set of UPOs up to symbolic dynamics’ period 14. At each instant, we rank the UPOs according to their proximity to the position of the orbit in the phase space. We study this process from two different perspectives. First, we find that longer period UPOs overwhelmingly provide the best local approximation to the trajectory. Second, we construct a finite-state Markov chain by studying the scattering of the orbit between the neighborhood of the various UPOs. Each UPO and its neighborhood are taken as a possible state of the system. Through the analysis of the subdominant eigenvectors of the corresponding stochastic matrix, we provide a different interpretation of the mixing processes occurring in the system by taking advantage of the concept of quasi-invariant sets.

1
H.
Poincaré
,
Les Méthodes Nouvelles de la Mécanique Céleste: Méthodes de MM. Newcomb, Glydén, Lindstedt et Bohlin. 1893
(
Gauthier-Villars it fils
,
1893
), Vol. 2.
2
P.
Cvitanović
, “
Periodic orbits as the skeleton of classical and quantum chaos
,”
Physica D
51
,
138
151
(
1991
).
3
P.
Cvitanovic
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
,
G.
Vattay
,
N.
Whelan
, and
A.
Wirzba
,
Chaos: Classical and Quantum
(
Niels Bohr Institute
,
Copenhagen
,
2005
), Vol. 69, p.
25
.
4
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Unstable periodic orbits and the dimensions of multifractal chaotic attractors
,”
Phys. Rev. A
37
,
1711
(
1988
).
5
J.-P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
273
312
(
1985
).
6
R.
Bowen
, “
ω-limit sets for axiom a diffeomorphisms
,”
J. Differ. Equ.
18
,
333
339
(
1975
).
7
M. C.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
(
Springer Science & Business Media
,
2013
), Vol. 1.
8
P.
Cvitanović
, “
Invariant measurement of strange sets in terms of cycles
,”
Phys. Rev. Lett.
61
,
2729
(
1988
).
9
D.
Ruelle
,
Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics
(
Cambridge University Press
,
2004
).
10
D.
Ruelle
, “
Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics
,”
J. Stat. Phys.
95
,
393
468
(
1999
).
11
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
1997
), Vol. 54.
12
S.
Smale
et al., “
Differentiable dynamical systems
,”
Bull. Am. Math. Soc.
73
,
747
817
(
1967
).
13
R.
Bowen
, “
Periodic orbits for hyperbolic flows
,”
Am. J. Math.
94
,
1
30
(
1972
).
14
G.
Gallavotti
,
Nonequilibrium and Irreversibility
(
Springer
,
2014
).
15
G.
Gallavotti
, “
Chaotic dynamics, fluctuations, nonequilibrium ensembles
,”
Chaos
8
,
384
392
(
1998
).
16
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in nonequilibrium statistical mechanics
,”
Phys. Rev. Lett.
74
,
2694
(
1995
).
17
B.
Eckhardt
and
G.
Ott
, “
Periodic orbit analysis of the Lorenz attractor
,”
Z. Phys. B: Condens. Matter
93
,
259
266
(
1994
).
18
P.
Cvitanović
, “
Dynamical averaging in terms of periodic orbits
,”
Physica D
83
,
109
123
(
1995
).
19
R.
Artuso
,
E.
Aurell
, and
P.
Cvitanovic
, “
Recycling of strange sets: I. Cycle expansions
,”
Nonlinearity
3
,
325
(
1990
).
20
B. R.
Hunt
and
E.
Ott
, “
Optimal periodic orbits of chaotic systems
,”
Phys. Rev. Lett.
76
,
2254
2257
(
1996
).
21
T.-H.
Yang
,
B. R.
Hunt
, and
E.
Ott
, “
Optimal periodic orbits of continuous time chaotic systems
,”
Phys. Rev. E
62
,
1950
1959
(
2000
).
22
S. M.
Zoldi
and
H. S.
Greenside
, “
Comment on ‘optimal periodic orbits of chaotic systems’
,”
Phys. Rev. Lett.
80
,
1790
(
1998
).
23
D.
Lasagna
, “
Sensitivity analysis of chaotic systems using unstable periodic orbits
,”
SIAM J. Appl. Dyn. Syst.
17
,
547
580
(
2018
).
24
D.
Lasagna
, “
Sensitivity of long periodic orbits of chaotic systems
,”
Phys. Rev. E
102
,
052220
(
2020
).
25
G. J.
Chandler
and
R. R.
Kerswell
, “
Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow
,”
J. Fluid Mech.
722
,
554
595
(
2013
).
26
D.
Auerbach
,
P.
Cvitanović
,
J.-P.
Eckmann
,
G.
Gunaratne
, and
I.
Procaccia
, “
Exploring chaotic motion through periodic orbits
,”
Phys. Rev. Lett.
58
,
2387
(
1987
).
27
R.
Artuso
,
E.
Aurell
, and
P.
Cvitanovic
, “
Recycling of strange sets: II. Applications
,”
Nonlinearity
3
,
361
(
1990
).
28
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
29
V.
Lucarini
, “
Evidence of dispersion relations for the nonlinear response of the Lorenz 63 system
,”
J. Stat. Phys.
134
,
381
400
(
2009
).
30
P.
Cvitanović
, “
Recurrent flows: The clockwork behind turbulence
,”
J. Fluid Mech.
726
,
1
4
(
2013
).
31
G.
Kawahara
and
S.
Kida
, “
Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst
,”
J. Fluid Mech.
449
,
291
(
2001
).
32
A.
Gritsun
, “
Unstable periodic trajectories of a barotropic model of the atmosphere
,”
Russ. J. Numer. Anal. Math. Modell.
23
,
345
367
(
2008
).
33
A.
Gritsun
, “
Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
371
,
20120336
(
2013
).
34
A.
Gritsun
and
V.
Lucarini
, “
Fluctuations, response, and resonances in a simple atmospheric model
,”
Physica D
349
,
62
76
(
2017
).
35
V.
Lucarini
and
A.
Gritsun
, “
A new mathematical framework for atmospheric blocking events
,”
Clim. Dyn.
54
,
575
598
(
2020
).
36
D.
Faranda
,
G.
Messori
, and
P.
Yiou
, “
Dynamical proxies of North Atlantic predictability and extremes
,”
Sci. Rep.
7
,
1685
(
2017
).
37
Y.-C.
Lai
,
Y.
Nagai
, and
C.
Grebogi
, “
Characterization of the natural measure by unstable periodic orbits in chaotic attractors
,”
Phys. Rev. Lett.
79
,
649
652
(
1997
).
38
G.
Yalniz
and
N. B.
Budanur
, “
Inferring symbolic dynamics of chaotic flows from persistence
,”
Chaos
30
,
033109
(
2020
).
39
M. C.
Krygier
,
J. L.
Pughe-Sanford
, and
R. O.
Grigoriev
, “
Exact coherent structures and shadowing in turbulent Taylor–Couette flow
,”
J. Fluid Mech.
923
,
A7
(
2021
).
40
S. M.
Ulam
,
Problems in Modern Mathematics
(
Courier Corporation
,
2004
).
41
G.
Yalniz
,
B.
Hof
, and
N. B.
Budanur
, “
Coarse graining the state space of a turbulent flow using periodic orbits
,”
Phys. Rev. Lett.
126
,
244502
(
2021
).
42
G.
Froyland
, “
Statistically optimal almost-invariant sets
,”
Physica D
200
,
205
219
(
2005
).
43
C. C.
Maiocchi
,
V.
Lucarini
, and
A.
Gritsun
(
2021
). “
Supplementary material to the article “Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: Averages, transitions, and quasi-invariant sets
,” Figshare. https://tinyurl.com/njs6dupe.
44
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents: A Tool to Explore Complex Dynamics
(
Cambridge University Press
,
2016
).
45
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
46
W.
Tucker
, “
The Lorenz attractor exists
,”
C.R. Acad. Sci., Ser. I: Math.
328
,
1197
1202
(
1999
).
47
Z.
Galias
and
P.
Zgliczyński
, “
Computer assisted proof of chaos in the Lorenz equations
,”
Physica D
115
,
165
188
(
1998
).
48
W.
Tucker
, “
A rigorous ODE solver and Smale’s 14th problem
,”
Found. Comput. Math.
2
,
53
117
(
2002
).
49
V.
Franceschini
,
C.
Giberti
, and
Z.
Zheng
, “
Characterization of the Lorentz attractor by unstable periodic orbits
,”
Nonlinearity
6
,
251
(
1993
).
50
S. M.
Zoldi
, “
Unstable periodic orbit analysis of histograms of chaotic time series
,”
Phys. Rev. Lett.
81
,
3375
(
1998
).
51
Y.
Saiki
and
M.
Yamada
, “
Reply to ‘Comment on ‘time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems”
,”
Phys. Rev. E
81
,
018202
(
2010
).
52
Y.
Saiki
and
M.
Yamada
, “
Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems
,”
Phys. Rev. E
79
,
015201
(
2009
).
53
M. A.
Zaks
and
D. S.
Goldobin
, “
Comment on ‘Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems’
,”
Phys. Rev. E
81
,
018201
(
2010
).
54
Y.
Saiki
, “
Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors
,”
Nonlinear Process. Geophys.
14
,
615
620
(
2007
).
55
R.
Barrio
,
A.
Dena
, and
W.
Tucker
, “
A database of rigorous and high-precision periodic orbits of the Lorenz model
,”
Comput. Phys. Commun.
194
,
76
83
(
2015
).
56
D.
Viswanath
, “
Symbolic dynamics and periodic orbits of the Lorenz attractor
,”
Nonlinearity
16
,
1035
(
2003
).
57
Z.
Galias
and
W.
Tucker
, “Symbolic dynamics based method for rigorous study of the existence of short cycles for chaotic systems,” in 2009 IEEE International Symposium on Circuits and Systems (IEEE, 2009), pp. 1907–1910.
58
R.
Bowen
, “Topological entropy and axiom A,” in Proceedings of Symposia in Pure Mathematics (American Mathematical Society, 1970), Vol. 14, pp. 23–41.
59
T.
Palmer
, “
Extended-range atmospheric prediction and the Lorenz model
,”
Bull. Am. Meteorol. Soc.
74
,
49
65
(
1993
).
60
C.
Sparrow
, The Lorenz Equations, edited by A. V. Holden (Princeton University Press, 1982), p. 111.
61
V.
Baladi
,
Positive Transfer Operators and Decay of Correlations
(
World Scientific
,
2000
), Vol. 16.
62
G.
Froyland
, “Extracting dynamical behavior via Markov models,” in Nonlinear Dynamics and Statistics (Springer, 2001), pp. 281–321.
63
G.
Froyland
, “
Approximating physical invariant measures of mixing dynamical systems in higher dimensions
,”
Nonlinear Anal.: Theory Methods Appl.
32
,
831
860
(
1998
).
64
V.
Lucarini
, “
Response operators for Markov processes in a finite state space: Radius of convergence and link to the response theory for axiom a systems
,”
J. Stat. Phys.
162
,
312
333
(
2016
).
65
M.
Santos Gutiérrez
and
V.
Lucarini
, “
Response and sensitivity using Markov chains
,”
J. Stat. Phys.
179
,
1572
1593
(
2020
).
66
M.
Dellnitz
and
O.
Junge
, “
On the approximation of complicated dynamical behavior
,”
SIAM J. Numer. Anal.
36
,
491
515
(
1999
).
67
M.
Dellnitz
and
O.
Junge
, “
Almost invariant sets in Chua’s circuit
,”
Int. J. Bifurcation Chaos
7
,
2475
2485
(
2011
).
68
G.
Froyland
, “
Unwrapping eigenfunctions to discover the geometry of almost-invariant sets in hyperbolic maps
,”
Physica D
237
,
840
853
(
2008
).
69
G.
Froyland
and
M.
Dellnitz
, “
Detecting and locating near-optimal almost-invariant sets and cycles
,”
SIAM J. Sci. Comput.
24
,
1839
1863
(
2003
).
70
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows
,”
Physica D
238
,
1507
1523
(
2009
).
71
T. S.
Parker
and
L.
Chua
, “Practical numerical algorithms for chaotic systems” (Springer, 1989).
72
G.
Froyland
and
K.
Padberg-Gehle
, “Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,” in Ergodic Theory, Open Dynamics, and Coherent Structures (Springer, 2014), pp. 171–216.
You do not currently have access to this content.