A problem of the probabilistic analysis of stochastic phenomena in slow–fast dynamical systems modeling biochemical reactions is considered. We study how multiplicative noise induces systematic shifts of probabilistic distributions and forms “phantom” attractors in nonlinear enzymatic models. The mathematical analysis of the underlying probabilistic mechanism of such stochastic transformations is performed by the “freeze-and-average” method. Our theoretical results are supported by direct numerical simulation.
REFERENCES
1.
R. J.
Field
and R. M.
Noyes
, “Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction
,” J. Chem. Phys.
60
(5
), 1877
–1884
(1974
). 2.
K.
Showalter
, R. M.
Noyes
, and K.
Bar-Eli
, “A modified Oregonator model exhibiting complicated limit cycle behavior in a flow system
,” J. Chem. Phys.
69
(6
), 2514
–2524
(1978
). 3.
J. J.
Tyson
and P. C.
Fife
, “Target patterns in a realistic model of the Belousov–Zhabotinskii reaction
,” J. Chem. Phys.
73
(5
), 2224
–2237
(1980
). 4.
J. H.
Espenson
, Chemical Kinetics and Reaction Mechanisms
(McGraw-Hill
, New York
, 1995
).5.
J. S.
Turner
, J.-C.
Roux
, W. D.
McCormick
, and H. L.
Swinney
, “Alternating periodic and chaotic regimes in a chemical reaction—Experiment and theory
,” Phys. Lett. A
85
(1
), 9
–12
(1981
). 6.
D.
Gurel
and O.
Gurel
, Oscillations in Chemical Reactions
(Springer-Verlag
, Berlin
, 1983
).7.
R. J.
Field
and M.
Burger
, Oscillations and Traveling Waves in Chemical Systems
(Wiley-Interscience
, New York
, 1985
).8.
P.
Richetti
, J. C.
Roux
, F.
Argoul
, and A.
Arneodo
, “From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. II. Modeling and theory
,” J. Chem. Phys.
86
(6
), 3339
–3356
(1987
). 9.
M.
Broens
and K.
Bar-Eli
, “Canard explosion and excitation in a model of the Belousov–Zhabotinskii reaction
,” J. Chem. Phys.
95
(22
), 8706
–8713
(1991
). 10.
R.
Kapral
and K.
Showalter
, Chemical Waves and Patterns
(Kluwer Academic Publishers
, London
, 2012
).11.
C. R.
Hasan
, B.
Krauskopf
, and H. M.
Osinga
, “Mixed-mode oscillations and twin Canard orbits in an autocatalytic chemical reaction
,” SIAM J. Appl. Dyn. Syst.
16
(4
), 2165
–2195
(2017
). 12.
A.
Tosolini
, M.
Patzauer
, and K.
Krischer
, “Bichaoticity induced by inherent birhythmicity during the oscillatory electrodissolution of silicon
,” Chaos
29
(4
), 043127
(2019
). 13.
P.
Gaspard
, “Stochastic approach to entropy production in chemical chaos
,” Chaos
30
(11
), 113103
(2020
). 14.
J.
Guckenheimer
and P. J.
Holmes
, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(Springer
, Berlin
, 1983
).15.
Y. A.
Kuznetsov
, Elements of Applied Bifurcation Theory
(Springer-Verlag
, New York
, 1998
).16.
L. P.
Shilnikov
, A. L.
Shilnikov
, D. V.
Turaev
, and L. O.
Chua
, Methods of Qualitative Theory in Nonlinear Dynamics. Part II
(World Scientific Publishing
, Hackensack, NJ
, 2001
).17.
A.
Goldbeter
, “Computational approaches to cellular rhythms
,” Nature
420
, 238
–245
(2002
). 18.
A.
Goldbeter
, “Dissipative structures in biological systems: Bistability, oscillations, spatial patterns and waves
,” Philos. Trans. R. Soc. A
376
, 20170376
(2018
). 19.
T.
Amemiya
, K.
Shibata
, Y.
Du
, S.
Nakata
, and T.
Yamaguchi
, “Modeling studies of heterogeneities in glycolytic oscillations in HeLa cervical cancer cells
,” Chaos
29
(3
), 033132
(2019
). 20.
N.
Fenichel
, “Geometric singular perturbation theory for ordinary differential equations
,” J. Differ. Equ.
31
, 53
–98
(1979
). 21.
J.
Grasman
, Asymptotic Methods for Relaxation Oscillations and Applications
(Springer
, New York
, 1987
).22.
M.
Krupa
and P.
Szmolyan
, “Extending geometric singular perturbation theory to nonhyperbolic points–Fold and Canard points in two dimensions
,” SIAM J. Math. Anal.
33
, 286
–314
(2001
). 23.
E. F.
Mishchenko
and N. K.
Rozov
, Differential Equations with Small Parameters and Relaxation Oscillations
(Plenum Press
, New York
, 1980
).24.
C. K. R. T.
Jones
, “Geometric singular perturbation theory,” in Dynamical Systems, Lecture Notes in Mathematics Vol. 1609, edited by R. Johnson (Springer, 1995), pp. 44–120.25.
R.
Bertram
and J. E.
Rubin
, “Multi-timescale systems and fast-slow analysis
,” Math. Biosci.
287
, 105
–121
(2017
). 26.
27.
V.
Bykov
and V.
Gol’dshtein
, “Fast and slow invariant manifolds in chemical kinetics
,” Comput. Math. Appl.
65
(10
), 1502
–1515
(2013
). 28.
X. X.
Wu
and T. J.
Kaper
, “Analysis of the approximate slow invariant manifold method for reactive flow equations
,” J. Math. Chem.
55
, 1725
–1754
(2017
). 29.
A.
Bose
and N.
Makri
, “Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics
,” J. Chem. Phys.
147
, 152723
(2017
). 30.
C. Y.
Zhou
, F.
Xie
, and Z. J.
Li
, “Complex bursting patterns and fast-slow analysis in a smallest chemical reaction system with two slow parametric excitations
,” Chaos, Solitons Fractals
137
, 109859
(2020
). 31.
32.
F.
Moss
and P. V. E.
McClintock
, Noise in Nonlinear Dynamical Systems
(Cambridge University Press
, Cambridge
, 1989
).33.
P.
Schuster
, Stochasticity in Processes: Fundamentals and Applications to Chemistry and Biology
(Springer
, Berlin
, 2016
).34.
M. D.
McDonnell
, N. G.
Stocks
, C. E. M.
Pearce
, and D.
Abbott
, Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
(Cambridge University Press
, Cambridge
, 2008
).35.
V. S.
Anishchenko
, V. V.
Astakhov
, A. B.
Neiman
, T. E.
Vadivasova
, and L.
Schimansky-Geier
, Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development
(Springer-Verlag
, Berlin
, 1988
).36.
J. B.
Gao
, S. K.
Hwang
, and J. M.
Liu
, “When can noise induce chaos?
,” Phys. Rev. Lett.
82
(6
), 1132
–1135
(1999
). 37.
B.
Lindner
, J.
Garcia-Ojalvo
, A.
Neiman
, and L.
Schimansky-Geier
, “Effects of noise in excitable systems
,” Phys. Rep.
392
, 321
–424
(2004
). 38.
D. V.
Alexandrov
, I. A.
Bashkirtseva
, M.
Crucifix
, and L. B.
Ryashko
, “Nonlinear climate dynamics: From deterministic behaviour to stochastic excitability and chaos
,” Phys. Rep.
902
, 1
–60
(2021
). 39.
G.
Huerta-Cuellar
, A. N.
Pisarchik
, and Y. O.
Barmenkov
, “Experimental characterization of hopping dynamics in a multistable fiber laser
,” Phys. Rev. E
78
, 035202
(2008
). 40.
A. N.
Pisarchik
and U.
Feudel
, “Control of multistability
,” Phys. Rep.
540
(4
), 167
–218
(2014
). 41.
Y.
Kabanov
and S.
Pergamenshchikov
, Two-Scale Stochastic Systems: Asymptotic Analysis and Control
(Springer-Verlag
, Berlin
, 2003
).42.
A. J.
Roberts
, “Normal form transforms separate slow and fast modes in stochastic dynamical systems
,” Physica A
387
(1
), 12
–38
(2008
). 43.
M.
Bruna
, S. J.
Chapman
, and M. J.
Smith
, “Model reduction for slow–fast stochastic systems with metastable behaviour
,” J. Chem. Phys.
140
(17
), 174107
(2014
). 44.
N.
Berglund
and B.
Gentz
, “Geometric singular perturbation theory for stochastic differential equations
,” J. Differ. Equ.
191
(1
), 1
–54
(2003
). 45.
I.
Bashkirtseva
and L.
Ryashko
, “How additive noise forms and shifts phantom attractors in slow–fast systems
,” J. Phys. A: Math. Theor.
53
(37
), 375008
(2020
). 46.
O.
D’Huys
, R.
Veltz
, A.
Dolcemascolo
, F.
Marino
, and S.
Barland
, “Canard resonance: On noise-induced ordering of trajectories in heterogeneous networks of slow-fast systems
,” J. Phys.: Photonics
3
, 024010
(2021
). 47.
I.
Bashkirtseva
and L.
Ryashko
, “How additive noise generates a phantom attractor in a model with cubic nonlinearity
,” Phys. Lett. A
380
(41
), 3359
–3365
(2016
). 48.
D. V.
Alexandrov
, I. A.
Bashkirtseva
, and L. B.
Ryashko
, “Anomalous stochastic dynamics induced by the slip-stick friction and leading to phantom attractors
,” Physica D
399
, 153
–158
(2019
). 49.
I.
Bashkirtseva
and L.
Ryashko
, “Stochastic bifurcations, chaos and phantom attractors in the Langford system with tori
,” Int. J. Bifurcation Chaos
30
(16
), 2030051
(2020
). 50.
L.
Ryashko
, D. V.
Alexandrov
, and I.
Bashkirtseva
, “Analysis of stochastic generation and shifts of phantom attractors in a climate–vegetation dynamical model
,” Mathematics
9
, 1329
(2021
). 51.
A.
Goldbeter
, T.
Erneux
, and L. A.
Segel
, “Excitability in the adenylate cyclase reaction in Dictyostelium discoideum
,” FEBS Lett.
89
, 237
–241
(1978
). 52.
A.
Goldbeter
and F.
Moran
, “Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations
,” Eur. Biophys. J.
15
, 277
–287
(1988
). 53.
E.
Benoît
, J.-L.
Callot
, F.
Diener
, and M.
Diener
, “Chasse au canards
,” Collect. Math.
31
, 37
–119
(1981
).54.
A.
Vidal
and J.-P.
Francoise
, “Canard cycles in global dynamics
,” Int. J. Bifurcation Chaos
22
(2
), 1250026
(2012
). 55.
I.
Bashkirtseva
, L.
Ryashko
, and S.
Zaitseva
, “Analysis of nonlinear stochastic oscillations in the biochemical Goldbeter model
,” Commun. Nonlinear Sci. Numer. Simul.
73
, 165
–176
(2019
). 56.
I.
Bashkirtseva
, L.
Ryashko
, and S.
Zaitseva
, “Stochastic sensitivity analysis of noise-induced transitions in a biochemical model with birhythmicity
,” J. Phys. A: Math. Theor.
53
, 265601
(2020
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.