In this experimental study of the nonlinear loss mechanism between traveling localized excitation and the underlying extended normal mode spectrum for a 1D lattice, three types of cyclic, electric, nonlinear transmission lines (NLTLs) are used. They are nonlinear capacitive, inductive, and capacitive+inductive NLTLs. To maintain a robust, steady-state traveling intrinsic localized mode (ILM), a traveling wave driver is used. The ILM loses energy because of a resonance between it and the extended NLTL modes. A wake field excitation is detected directly from ILM velocity experiments by the decrease in ILM speed and by the observation of the wake. Its properties are quantified via a two-dimensional Fourier map in the frequency-wavenumber domain, determined from the measured spatial-time voltage pattern. Simulations support and extend these experimental findings. We find for the capacitive+inductive NLTL configuration, when the two nonlinear terms are theoretically balanced, the wake excitation is calculated to become very small, giving rise to supertransmission over an extended driving frequency range.

1.
A. J.
Sievers
and
S.
Takeno
, “
Intrinsic localized modes in anharmonic crystals
,”
Phys. Rev. Lett.
61
,
970
973
(
1988
).
2.
M.
Sato
,
T.
Nakaguchi
,
T.
Ishikawa
,
S.
Shige
,
Y.
Soga
,
Y.
Doi
, and
A. J.
Sievers
, “
Supertransmission channel for an intrinsic localized mode in a one-dimensional nonlinear physical lattice
,”
Chaos
25
,
103122
(
2015
).
3.
A. S.
Dolgov
, “
The localization of vibrations in a nonlinear crystal structure
,”
Sov. Phys. Solid State
28
,
907
(
1986
); available at http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=344&option_lang=eng.
4.
M.
Sato
,
B. E.
Hubbard
,
A. J.
Sievers
,
B.
Ilic
,
D. A.
Czaplewski
, and
H. G.
Craighead
, “
Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array
,”
Phys. Rev. Lett.
90
,
044102
(
2003
).
5.
M.
Sato
,
B. E.
Hubbard
,
L. Q.
English
,
A. J.
Sievers
,
B.
Ilic
,
D. A.
Czaplewski
, and
H. G.
Craighead
, “
Study of intrinsic localized vibrational modes in micromechanical oscillator arrays
,”
Chaos
13
,
702
715
(
2003
).
6.
M.
Sato
,
B. E.
Hubbard
, and
A. J.
Sievers
, “
Colloquium: Nonlinear energy localization and its manipulation in micromechanical oscillator arrays
,”
Rev. Mod. Phys.
78
,
137
157
(
2006
).
7.
A. J.
Dick
,
B.
Balachandran
,
J.
Mote
, and
C.
Daniel
, “
Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes
,”
Nonlinear Dyn.
54
,
13
29
(
2008
).
8.
A. J.
Dick
,
B.
Balachandran
,
J.
Mote
, and
C.
Daniel
, “
Localization in microresonator arrays: Influence of natural frequency tuning
,”
J. Comput. Nonlinear Dyn.
5
,
011002
(
2009
).
9.
M.
Kimura
and
T.
Hikihara
, “
Capture and release of traveling intrinsic localized mode in coupled cantilever array
,”
Chaos
19
,
013138
(
2009
).
10.
M.
Kimura
,
Y.
Matsushita
, and
T.
Hikihara
, “
Parametric resonance of intrinsic localized modes in coupled cantilever arrays
,”
Phys. Lett. A
380
,
2823
2827
(
2016
).
11.
M.
Kimura
and
T.
Hikihara
, “
Stability change of intrinsic localized mode in finite nonlinear coupled oscillators
,”
Phys. Lett. A
372
,
4592
4595
(
2008
).
12.
E.
Perkins
,
M.
Kimura
,
T.
Hikihara
, and
B.
Balachandran
, “
Effects of noise on symmetric intrinsic localized modes
,”
Nonlinear Dyn.
85
,
333
341
(
2016
).
13.
D. N.
Christodoulides
and
R. I.
Joseph
, “
Discrete self-focusing in nonlinear arrays of coupled waveguides
,”
Opt. Lett.
13
,
794
796
(
1988
).
14.
S.
Flach
and
A. V.
Gorbach
, “
Discrete breathers—Advances in theory and applications
,”
Phys. Rep.
467
,
1
116
(
2008
).
15.
S.
Flach
and
C.
Willis
, “
Discrete breathers
,”
Phys. Rep.
295
,
181
264
(
1998
).
16.
M.
Sato
,
Y.
Sada
,
W.
Shi
,
S.
Shige
,
T.
Ishikawa
,
Y.
Soga
,
B. E.
Hubbard
,
B.
Ilic
, and
A. J.
Sievers
, “
Dynamics of impurity attraction and repulsion of an intrinsic localized mode in a driven 1D cantilever array
,”
Chaos
25
,
013103
(
2015
).
17.
M.
Sato
,
B. E.
Hubbard
,
A. J.
Sievers
,
B.
Ilic
, and
H. G.
Craighead
, “
Optical manipulation of intrinsic localized vibrational energy in cantilever arrays
,”
Europhys. Lett.
66
,
318
323
(
2004
).
18.
M.
Sato
and
A. J.
Sievers
, “
Driven localized excitations in the acoustic spectrum of small nonlinear macroscopic and microscopic lattices
,”
Phys. Rev. Lett.
98
,
214101
(
2007
).
19.
L.
Brillouin
,
Wave Propagation in Periodic Structures
(
McGraw Hill
,
New York
,
1946
).
20.
R.
Hirota
and
K.
Suzuki
, “
Studies on lattice solitons by using electrical networks
,”
J. Phys. Soc. Jpn.
28
,
1366
1367
(
1970
).
21.
R.
Hirota
and
K.
Suzuki
, “
Theoretical and experimental studies of lattice solitons in nonlinear lumped networks
,”
Proc. IEEE
61
,
1483
1491
(
1973
).
22.
K.
Fukushima
,
M.
Wadati
, and
Y.
Narahara
, “
Envelope solition in a new nonlinear transmission line
,”
J. Phys. Soc. Jpn.
49
,
1593
1597
(
1980
).
23.
M.
Remoissenet
,
Waves Called Solitons: Concepts and Experiments
(
Springer-Verlag
,
Berlin
,
1999
).
24.
P.
Marquié
,
J. M.
Bilbault
, and
M.
Remoissenet
, “
Observation of nonlinear localized modes in an electrical lattice
,”
Phys. Rev. E
51
,
6127
6133
(
1995
).
25.
F.
Palmero
,
L. Q.
English
,
J.
Cuevas
,
R.
Carretero-González
, and
P. G.
Kevrekidis
, “
Discrete breathers in a nonlinear electric line: Modeling, computation, and experiment
,”
Phys. Rev. E
84
,
026605
(
2011
).
26.
L. Q.
English
,
F.
Palmero
,
J. F.
Stormes
,
J.
Cuevas
,
R.
Carretero-González
, and
P. G.
Kevrekidis
, “
Nonlinear localized modes in two-dimensional electrical lattices
,”
Phys. Rev. E
88
,
022912
(
2013
).
27.
X.-L.
Chen
,
S.
Abdoulkary
,
P. G.
Kevrekidis
, and
L. Q.
English
, “
Resonant localized modes in electrical lattices with second-neighbor coupling
,”
Phys. Rev. E
98
,
052201
(
2018
).
28.
F.
Palmero
,
L. Q.
English
,
X.-L.
Chen
,
W.
Li
,
J.
Cuevas-Maraver
, and
P. G.
Kevrekidis
, “
Experimental and numerical observation of dark and bright breathers in the band gap of a diatomic electrical lattice
,”
Phys. Rev. E
99
,
032206
(
2019
).
29.
F.
Palmero
,
J.
Cuevas-Maraver
,
L. Q.
English
,
W.
Li
, and
R.
Chacón
, “
Induced localized nonlinear modes in an electrical lattice
,”
Phys. Scr.
94
,
065210
(
2019
).
30.
A. J.
Fairbanks
,
A. M.
Darr
, and
A. L.
Garner
, “
A review of nonlinear transmission line system design
,”
IEEE Access
8
,
148606
148621
(
2020
).
31.
S.
Shige
,
K.
Miyasaka
,
W.
Shi
,
Y.
Soga
,
M.
Sato
, and
A. J.
Sievers
, “
Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice
,”
Europhys. Lett.
121
,
30003
(
2018
).
32.
T.
Kuusela
,
J.
Hietarinta
, and
B. A.
Malomed
, “
Numerical study of solitons in the damped AC-driven Toda lattice
,”
J. Phys. A
26
,
L21
L26
(
1993
).
33.
B. A.
Malomed
, “
Propagating solitons in damped ac-driven chains
,”
Phys. Rev. A
45
,
4097
4101
(
1992
).
34.
L. L.
Bonilla
and
B. A.
Malomed
, “
Motion of kinks in the ac-driven damped Frenkel-Kontorova chain
,”
Phys. Rev. B
43
,
11539
11541
(
1991
).
35.
E.
Goldobin
,
B. A.
Malomed
, and
A. V.
Ustinov
, “
Progressive motion of an ac-driven kink in an annular damped system
,”
Phys. Rev. E
65
,
056613
(
2002
).
36.
D.
Zueco
,
P. J.
Martínez
,
L. M.
Floría
, and
F.
Falo
, “
Mode-locking of mobile discrete breathers
,”
Phys. Rev. E
71
,
036613
(
2005
).
37.
D.
Cai
,
A. R.
Bishop
, and
A.
Sánchez
, “
Length-scale competition in the damped sine-Gordon chain with spatiotemporal periodic driving
,”
Phys. Rev. E
48
,
1447
1452
(
1993
).
38.
M.
Sato
,
N.
Fujita
,
Y.
Takao
,
S.
Nishimura
,
W.
Shi
,
Y.
Sada
,
Y.
Soga
, and
A. J.
Sievers
, “
Precise velocity measurements for driven intrinsic localized modes in the acoustic spectrum of small cantilever arrays
,”
Nonlinear Theory Appl. IEICE
3
,
87
102
(
2012
).
39.
H.
Suzuki
,
S.
Ibuka
,
T.
Miyazawa
, and
S.
Ishii
, “
High voltage pulse generation in nonlinear transmission line with ceramic capacitors
,”
Electr. Eng. Jpn.
115
,
1
10
(
1995
).
40.
L. P.
Silva Neto
,
J. O.
Rossi
,
J. J.
Barroso
, and
E.
Schamiloglu
, “
High-power rf generation from nonlinear transmission lines with barium titanate ceramic capacitors
,”
IEEE Trans. Plasma Sci.
44
,
3424
3431
(
2016
).
41.
D. M.
French
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
, “High power nonlinear transmission lines with nonlinear inductance,” in
2010 IEEE International Power Modulator and High Voltage Conference
(IEEE, 2010), pp. 598–599.
42.
L. P.
Silva Neto
,
J. O.
Rossi
,
J. J.
Barroso
, and
E.
Schamiloglu
, “
Hybrid nonlinear transmission lines used for RF soliton generation
,”
IEEE Trans. Plasma Sci.
46
,
3648
3652
(
2018
).
43.
M. M.
Bogdan
and
D. V.
Laptev
, “
Exact description of the discrete breathers and solitons interaction in the nonlinear transmission lines
,”
J. Phys. Soc. Jpn.
83
,
064007
(
2014
).
44.
R.
Hirota
, “
Exact N-soliton solution of nonlinear lumped self-dual network equations
,”
J. Phys. Soc. Jpn.
35
,
289
294
(
1973
).
45.
D. V.
Laptev
and
M. M.
Bogdan
, “
Nonlinear periodic waves solutions of the nonlinear self-dual network equations
,”
J. Math. Phys.
55
,
042903
(
2014
).
46.
A. H.
Nayfeh
and
D. T.
Mook
,
Nonlinear Oscillations
, Wiley classics library ed. (
John Willey & Sons, Inc
,
New York
,
1995
), Chap. 4, pp. 162–167.
47.
K. W.
Sandusky
,
J. B.
Page
, and
K. E.
Schmidt
, “
Stability and motion of intrinsic localized modes in nonlinear periodic lattices
,”
Phys. Rev. B
46
,
6161
6168
(
1992
).
48.
V. M.
Burlakov
, “
Interference of mode instabilities and pattern formation in anharmonic lattices
,”
Phys. Rev. Lett.
80
,
3988
3991
(
1998
).
49.
J. B.
Page
, “
Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems
,”
Phys. Rev. B
41
,
7835
7838
(
1990
).
50.
T.
Rossler
and
J.
Page
, “
Intrinsic localized modes in driven anharmonic lattices with realistic potentials
,”
Phys. Lett. A
204
,
418
426
(
1995
).
51.
M.
Sato
,
T.
Mukaide
,
T.
Nakaguchi
, and
A. J.
Sievers
, “
Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line
,”
Phys. Rev. E
94
,
012223
(
2016
).
52.
S. R.
Bickham
,
A. J.
Sievers
, and
S.
Takeno
, “
Numerical measurements of the shape and dispersion relation for moving one-dimensional anharmonic localized modes
,”
Phys. Rev. B
45
,
10344
10347
(
1992
).
You do not currently have access to this content.