The severe acute respiratory syndrome of coronavirus 2 spread globally very quickly, causing great concern at the international level due to the severity of the associated respiratory disease, the so-called COVID-19. Considering Rio de Janeiro city (Brazil) as an example, the first diagnosis of this disease occurred in March 2020, but the exact moment when the local spread of the virus started is uncertain as the Brazilian epidemiological surveillance system was not widely prepared to detect suspected cases of COVID-19 at that time. Improvements in this surveillance system occurred over the pandemic, but due to the complex nature of the disease transmission process, specifying the exact moment of emergence of new community contagion outbreaks is a complicated task. This work aims to propose a general methodology to determine possible start dates for the multiple community outbreaks of COVID-19, using for this purpose a parametric statistical approach that combines surveillance data, nonlinear regression, and information criteria to obtain a statistical model capable of describing the multiple waves of contagion observed. The dynamics of COVID-19 in the city of Rio de Janeiro is taken as a case study, and the results suggest that the original strain of the virus was already circulating in Rio de Janeiro city as early as late February 2020, probably being massively disseminated in the population during the carnival festivities.

1.
F.
Wu
et al., “
A new coronavirus associated with human respiratory disease in China
,”
Nature
579
,
265
269
(
2020
).
2.
N.
Zhu
et al., “
A novel coronavirus from patients with pneumonia in China, 2019
,”
N. Engl. J. Med.
382
,
727
733
(
2020
).
3.
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses
, “
The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2
,”
Nat. Microbiol.
5
,
536
544
(
2020
).
4.
D.
Endy
and
R.
Brent
, “
The proximal origin of SARS-CoV-2
,”
Nat. Med.
26
,
450
452
(
2020
).
5.
World Health Organization, “Novel coronavirus (2019-nCoV) situation report—22,” 11 February 2020.
6.
The Lancet
, “
Emerging understandings of 2019-nCoV
,”
Lancet
395
,
311
(
2020
).
7.
World Health Organization, “Novel coronavirus (2019-nCoV) situation report—1,” 21 January 2020.
8.
World Health Organization, “Coronavirus disease 2019 (COVID-19) situation report—51,” 11 March 2020.
9.
E.
Dong
,
H.
Du
, and
L.
Gardner
, “
An interactive web-based dashboard to track COVID-19 in real time
,”
Lancet Infect. Dis.
20
,
533
534
(
2020
).
10.
See https://www.worldometers.info/coronavirus for “Worldometer—Real time world statistics, Coronavirus,” 2022.
11.
J. K.
Taubenberger
and
D. M.
Morens
, “
1918 Influenza: The mother of all pandemics
,”
Emerg. Infect. Dis.
12
,
15
22
(
2006
).
12.
Agência Brasil, see https://agenciabrasil.ebc.com.br/en/saude/noticia/2020-02/brazil-confirms-first-case-coronavirus for “Brazil confirms first case of coronavirus,” 26 February 2020.
13.
L.
Lovisolo
,
D. H. S.
Catalão
,
R. B.
Burgos
,
M.
Grave
,
P.
Constantino-Teles
, and
A.
Cunha
, Jr.
, “COVID-19 mortality according to civilian records,”
medRxiv
(2020).
14.
A.
Cunha
, Jr.
, et al, “Relatório 30 progresso da COVID-19 no Brasil e no estado do Rio de Janeiro 36a à 40a semana epidemiológica do calendário 2021 (29/08/2021 até 02/10/2021),”
COVID-19: Observatrio Fluminense hal-03518537
, 10 March 2021.
15.
J. R.
Cavalcante
and
A. L.
Abreu
, “
COVID-19 in the city of Rio de Janeiro: Spatial analysis of first confirmed cases and deaths
,”
Epidemiol. Serv. Saúde
29
,
e2020204
(
2020
).
16.
C. M.
Voloch
et al., “
Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil
,”
J. Virol.
95
,
e00119
(
2021
).
17.
P.
Resende
et al., “
Severe acute respiratory syndrome coronavirus 2 P.2 lineage associated with reinfection case, Brazil, June–October 2020
,”
Emerg. Infect. Dis.
27
,
1789
1794
(
2021
).
18.
Mathematical Epidemiology, edited by F. Brauer, P. van den Driessche, and J. Wu (Springer, 2008).
19.
F.
Brauer
, “
Mathematical epidemiology: Past, present, and future
,”
Infect. Dis. Modell.
2
,
113
127
(
2017
).
20.
M.
Martcheva
,
An Introduction to Mathematical Epidemiology
, 1st ed. (
Springer
,
2015
).
21.
R.
Lal
,
W.
Huang
, and
Z.
Li
, “
An application of the ensemble Kalman filter in epidemiological modelling
,”
PLoS One
16
,
1
25
(
2021
).
22.
A. J.
Kucharski
,
T. W.
Russell
,
C.
Diamond
,
Y.
Liu
,
E. J. S.
Funk
, and
R. M.
Eggo
, “
Early dynamics of transmission and control of COVID-19: A mathematical modelling study
,”
Lancet Infect. Dis.
20
,
553
558
(
2020
).
23.
Z.
Liu
,
P.
Magal
,
O.
Seydi
, and
G.
Webb
, “Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data,”
Math. Biosci. Eng.
17
, 3040 (2020).
24.
S.
Khajanchi
and
K.
Sarkar
, “
Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India
,”
Chaos
30
,
071101
(
2020
).
25.
F. S.
Lobato
,
G. B.
Libotte
, and
G. M.
Platt
, “
Mathematical modelling of the second wave of COVID-19 infections using deterministic and stochastic SIDR models
,”
Nonlinear Dyn.
106
,
1359
1373
(
2021
).
26.
R. M.
Cotta
,
C. P.
Naveira-Cotta
, and
P.
Magal
, “
Mathematical parameters of the COVID-19 epidemic in Brazil and evaluation of the impact of different public health measures
,”
Biology
9
,
220
(
2020
).
27.
W.
Lyra
,
J.-D.
do Nascimento
,
J.
Belkhiria
,
L.
de Almeida
,
P. P. M.
Chrispim
, and
I.
de Andrade
, “
COVID-19 pandemics modeling with modified determinist SEIR, social distancing, and age stratification. The effect of vertical confinement and release in Brazil
,”
PLoS One
15
,
e0237627
(
2020
).
28.
L.
Magri
and
N. A. K.
Doan
, “First-principles machine learning modelling of COVID-19,” arXiv:2004.09478v1 (2020).
29.
S.
He
,
Y.
Peng
, and
K.
Sun
, “
SEIR modeling of the COVID-19 and its dynamics
,”
Nonlinear Dyn.
101
,
1667
1680
(
2020
).
30.
V. V.
Albani
,
J.
Loria
,
E.
Massad
, and
J. P.
Zubelli
, “
The impact of COVID-19 vaccination delay: A data-driven modeling analysis for Chicago and New York City
,”
Vaccine
39
,
6088
6094
(
2021
).
31.
E.
Kuhl
,
Computational Epidemiology: Data-Driven Modeling of COVID-19
(
Springer
,
2021
).
32.
J.
Chen
,
S.
Levin
,
S.
Eubank
,
H.
Mortveit
,
S.
Venkatramanan
,
A.
Vullikanti
, and
M.
Marathe
, “
Networked epidemiology for COVID-19
,”
SIAM News
53
(
5
), (
2020
).
33.
G. S.
Costa
,
W.
Cota
, and
S. C.
Ferreira
, “
Outbreak diversity in epidemic waves propagating through distinct geographical scales
,”
Phys. Rev. Res.
2
,
043306
(
2020
).
34.
A.
Aleta
,
D.
Martín-Corral
,
A.
Pastore y Piontti
,
M.
Ajelli
,
M.
Litvinova
,
M.
Chinazzi
,
N. E.
Dean
,
M. E.
Halloran
,
I. M.
Longini
, Jr.
,
S.
Merler
,
A.
Pentland
,
A.
Vespignani
,
E.
Moro
, and
Y.
Moreno
, “
Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19
,”
Nat. Hum. Behav.
4
,
964
971
(
2020
).
35.
A.
Aleta
and
Y.
Moreno
, “
Evaluation of the potential incidence of COVID-19 and effectiveness of containment measures in Spain: A data-driven approach
,”
BMC Med.
18
,
1049
(
2020
).
36.
P. C.
Ventura
,
A.
Aleta
,
F. A.
Rodrigues
, and
Y.
Moreno
, “Epidemic spreading in populations of mobile agents with adaptive behavioral response,” arXiv:2112.07829 (2021).
37.
X.
Liu
,
X.
Zheng
, and
B.
Balachandran
, “
COVID-19: Data-driven dynamics, statistical and distributed delay models, and observations
,”
Nonlinear Dyn.
101
,
1527
1543
(
2020
).
38.
G. L.
Vasconcelos
,
A. M. S.
Macêdo
,
R.
Ospina
,
F. A. G.
Almeida
,
G. C.
Duarte-Filho
, and
I. C. L.
Souza
, “Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies,”
PeerJ
8, e9421 (2020).
39.
E.
Pelinovsky
,
A.
Kurkin
,
O.
Kurkina
,
M.
Kokoulina
, and
A.
Epifanova
, “
Logistic equation and COVID-19
,”
Chaos, Solitons Fractals
140
,
110241
(
2020
).
40.
G. L.
Vasconcelos
,
A. A.
Brum
,
F. A. G.
Almeida
,
A. M. S.
Macêdo
,
G. C.
Duarte-Filho
, and
R.
Ospina
, “
Standard and anomalous waves of COVID-19: A multiple-wave growth model for epidemics
,”
Braz. J. Phys.
51
,
1867
1883
(
2021
).
41.
G. L.
Vasconcelos
,
A. M. S.
Macêdo
,
G. C.
Duarte-Filho
,
A. A.
Brum
,
R.
Ospina
, and
F. A. G.
Almeida
, “
Power law behaviour in the saturation regime of fatality curves of the COVID-19 pandemic
,”
Sci. Rep.
11
,
103
(
2021
).
42.
K.
Chol-Jun
, “
The power-law distribution in the geometrically growing system: Statistic of the COVID-19 pandemic
,”
Chaos
32
,
013111
(
2022
).
43.
E.
Pelinovsky
,
M.
Kokoulina
,
A.
Epifanova
,
A.
Kurkin
,
O.
Kurkina
,
M.
Tang
,
E.
Macau
, and
M.
Kirillin
, “
Gompertz model in COVID-19 spreading simulation
,”
Chaos, Solitons Fractals
154
,
111699
(
2022
).
44.
Y.
Contoyiannis
,
S. G.
Stavrinides
,
M. P.
Hanias
,
M.
Kampitakis
,
P.
Papadopoulos
,
R.
Picos
,
S. M.
Potirakis
, and
E. K.
Kosmidis
, “
Criticality in epidemic spread: An application in the case of COVID-19 infected population
,”
Chaos
31
,
043109
(
2021
).
45.
Y.
Contoyiannis
,
S. G.
Stavrinides
,
M. P.
Hanias
,
M.
Kampitakis
,
P.
Papadopoulos
,
R.
Picos
,
S. M.
Potirakis
, and
E.
Kosmidis
, “
Application of the method of parallel trajectories on modeling the dynamics of COVID-19 third wave
,”
Chaos
32
,
011103
(
2022
).
46.
M. R.
Romadhon
and
F.
Kurniawan
, “A comparison of naive Bayes methods, logistic regression and KNN for predicting healing of Covid-19 patients in Indonesia,” in 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) (IEEE, 2021), pp. 41–44.
47.
J.
Calatayud
,
M.
Jornet
, and
J.
Mateu
, “A stochastic Bayesian bootstrapping model for COVID-19 data,”
Stoch. Environ. Res. Risk Assess.
(published online 2022).
48.
E.
Delatorre
et al., “
Tracking the onset date of the community spread of SARS-CoV-2 in Western countries
,”
Mem. Inst. Oswaldo Cruz
115
,
1
13
(
2020
).
49.
F. C.
Batista
and
A.
Cunha
, Jr.
, “Inferência dos estágios iniciais da COVID-19 em Portugal,” in XXIII Congresso Brasileiro de Automática, CBA, Santa Maria, Brazil (Sociedade Brasileira de Automática, 2020).
50.
Z.-M.
Zhai
,
Y.-S.
Long
,
M.
Tang
,
Z.
Liu
, and
Y.-C.
Lai
, “
Optimal inference of the start of COVID-19
,”
Phys. Rev. Res.
3
,
013155
(
2021
).
51.
See http://coronavirus.rio/painel for “Painel covid da cidade do Rio de Janeiro,” 2022.
52.
Building a Platform for Data-Driven Pandemic Prediction From Data Modelling to Visualisation—The CovidLP Project, edited by D. Gamerman, M. O. Prates, T. Paiva, and V. D. Mayrink (Chapman and Hall, 2022).
53.
F.
Brauer
and
C.
Castillo-Chávez
,
Mathematical Models in Population Biology and Epidemiology
(
Springer
,
2001
).
54.
J. D.
Murray
,
Mathematical Biology: I: An Introduction
, 3rd ed. (
Springer
,
2002
).
55.
Y.
Zou
,
S.
Pan
,
P.
Zhao
,
L.
Han
,
X.
Wang
,
L.
Hemerik
,
J.
Knops
, and
W.
van der Werf
, “
Outbreak analysis with a logistic growth model shows COVID-19 suppression dynamics in China
,”
PLoS One
15
,
1
10
(
2020
).
56.
L.
Wasserman
,
All of Statistics
(
Springer
,
2004
).
57.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning
, 2nd ed. (
Springer
,
2009
).
58.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
, 2nd ed. (
Springer-Verlag
,
New York
,
2006
).
59.
J. F.
Bonnans
,
J. C.
Gilbert
,
C.
Lemarechal
, and
C. A.
SagastizÁbal
,
Numerical Optimization: Theoretical and Practical Aspects
, 2nd ed. (
Springer
,
2009
).
60.
D. P.
Kroese
,
T.
Taimre
, and
Z. I.
Botev
,
Handbook of Monte Carlo Methods
(
Wiley
,
2011
).
61.
A.
Cunha
, Jr.
,
R.
Nasser
,
R.
Sampaio
,
H.
Lopes
, and
K.
Breitman
, “
Uncertainty quantification through Monte Carlo method in a cloud computing setting
,”
Comput. Phys. Commun.
185
,
1355
1363
(
2014
).
62.
C.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer
,
2006
).
63.
S. L.
Brunton
and
J. N.
Kutz
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
(
Cambridge University Press
,
2019
).
64.
I.
Hawryluk
,
T. A.
Mellan
,
H.
Hoeltgebaum
,
S.
Mishra
,
R. P.
Schnekenberg
,
C.
Whittaker
,
H.
Zhu
,
A.
Gandy
,
C. A.
Donnelly
,
S.
Flaxman
, and
S.
Bhatt
, “
Inference of COVID-19 epidemiological distributions from Brazilian hospital data
,”
J. R. Soc. Interface
17
,
20200596
(
2020
).
65.
H.
Ashktorab
et al., “
A comprehensive analysis of COVID-19 impact in Latin America
,”
Res. Sq.
rs-141245
(
2021
).

Supplementary Material

You do not currently have access to this content.