We present a detailed analysis of the dynamical regimes observed in a balanced network of identical quadratic integrate-and-fire neurons with sparse connectivity for homogeneous and heterogeneous in-degree distributions. Depending on the parameter values, either an asynchronous regime or periodic oscillations spontaneously emerge. Numerical simulations are compared with a mean-field model based on a self-consistent Fokker–Planck equation (FPE). The FPE reproduces quite well the asynchronous dynamics in the homogeneous case by either assuming a Poissonian or renewal distribution for the incoming spike trains. An exact self-consistent solution for the mean firing rate obtained in the limit of infinite in-degree allows identifying balanced regimes that can be either mean- or fluctuation-driven. A low-dimensional reduction of the FPE in terms of circular cumulants is also considered. Two cumulants suffice to reproduce the transition scenario observed in the network. The emergence of periodic collective oscillations is well captured both in the homogeneous and heterogeneous setups by the mean-field models upon tuning either the connectivity or the input DC current. In the heterogeneous situation, we analyze also the role of structural heterogeneity.

1.
A.
Pikovsky
and
M.
Rosenblum
,
Chaos
25
,
097616
(
2015
).
2.
A. T.
Winfree
, The Geometry of Biological Time, 2nd ed., Interdisciplinary Applied Mathematics Vol. 12 (Springer-Verlag, New York, 2001).
3.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer Science and Business Media
,
2012
), Vol. 19.
4.
H.
Hong
,
H.
Chaté
,
H.
Park
, and
L.-H.
Tang
,
Phys. Rev. Lett.
99
,
184101
(
2007
).
5.
J. D.
Crawford
,
J. Stat. Phys.
74
,
1047
(
1994
).
6.
S. H.
Strogatz
,
Phys. D
143
,
1
(
2000
).
7.
J.
Barre
and
D.
Métivier
,
Phys. Rev. Lett.
117
,
214102
(
2016
).
8.
S.
Watanabe
and
S. H.
Strogatz
,
Phys. D
74
,
197
(
1994
).
9.
E.
Ott
and
T. M.
Antonsen
,
Chaos
18
,
037113
(
2008
).
10.
T. B.
Luke
,
E.
Barreto
, and
P.
So
,
Neural Comput.
25
,
3207
(
2013
).
11.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
,
Phys. Rev. X
5
,
021028
(
2015
).
12.
C. R.
Laing
,
J. Math. Neurosci.
8
,
4
(
2018
).
13.
G.
Buzsaki
,
Rhythms of the Brain
(
Oxford University Press
,
2006
).
14.
I. V.
Tyulkina
,
D. S.
Goldobin
,
L. S.
Klimenko
, and
A.
Pikovsky
,
Phys. Rev. Lett.
120
,
264101
(
2018
).
15.
I.
Ratas
and
K.
Pyragas
,
Phys. Rev. E
100
,
052211
(
2019
).
16.
M.
di Volo
and
A.
Torcini
,
Phys. Rev. Lett.
121
,
128301
(
2018
).
17.
D. S.
Goldobin
,
M.
di Volo
, and
A.
Torcini
,
Phys. Rev. Lett.
127
,
038301
(
2021
).
18.
W. R.
Softky
and
C.
Koch
, “
Cortical cells should fire regularly, but do not
,”
Neural Comput.
4
,
643
(
1992
).
19.
C.
van Vreeswijk
and
H.
Sompolinsky
,
Science
274
,
1724
(
1996
).
20.
J.
Kadmon
and
H.
Sompolinsky
,
Phys. Rev. X
5
,
041030
(
2015
).
21.
Y.
Shu
,
A.
Hasenstaub
, and
D. A.
McCormick
,
Nature
423
,
288
(
2003
).
22.
B.
Haider
,
A.
Duque
,
A. R.
Hasenstaub
, and
D. A.
McCormick
,
J. Neurosci.
26
,
4535
(
2006
).
23.
J.
Barral
and
A. D.
Reyes
,
Nat. Neurosci.
19
,
1690
(
2016
).
24.
M.
Okun
and
I.
Lampl
,
Nat. Neurosci.
11
,
535
(
2008
).
25.
J. S.
Isaacson
and
M.
Scanziani
,
Neuron
72
,
231
(
2011
).
26.
M.
Le Van Quyen
,
L. E.
Muller
,
B.
Telenczuk
,
E.
Halgren
,
S.
Cash
,
N. G.
Hatsopoulos
,
N.
Dehghani
, and
A.
Destexhe
,
Proc. Natl. Acad. Sci.
113
,
9363
(
2016
).
27.
A.
Renart
,
J.
de la Rocha
,
P.
Bartho
,
L.
Hollender
,
N.
Parga
,
A.
Reyes
, and
K. D.
Harris
,
Science
327
,
587
(
2010
).
28.
A.
Litwin-Kumar
and
B.
Doiron
,
Nat. Neurosci.
15
,
1498
(
2012
).
29.
E.
Ullner
,
A.
Politi
, and
A.
Torcini
,
Phys. Rev. Res.
2
,
023103
(
2020
).
30.
H.
Bi
,
M.
Di Volo
, and
A.
Torcini
,
Front. Syst. Neurosci.
15
,
752261
(
2021
).
31.
M.
Monteforte
and
F.
Wolf
,
Phys. Rev. Lett.
105
,
268104
(
2010
).
32.
N.
Brunel
,
J. Comput. Neurosci.
8
,
183
(
2000
).
33.
S.
Ostojic
,
Nat. Neurosci.
17
,
594
(
2014
).
34.
E.
Ullner
,
A.
Politi
, and
A.
Torcini
,
Chaos
28
,
081106
(
2018
).
35.
N.
Brunel
and
V.
Hakim
,
Neural Comput.
11
,
1621
(
1999
).
36.
H.
Bi
,
M.
Segneri
,
M.
di Volo
, and
A.
Torcini
,
Phys. Rev. Res.
2
,
013042
(
2020
).
37.
G. B.
Ermentrout
and
N.
Kopell
,
SIAM J. Appl. Math.
46
,
233
(
1986
).
38.
D. S.
Goldobin
and
A. V.
Dolmatova
,
Phys. Rev. Res.
1
,
033139
(
2019
).
39.
In this paper, we have cosidered adimensional units. However, a comparison with experimental measurements can be performed at least in the time domain (e.g., for the firing rates and the frequncies of the colletive oscillations) by assuming as a time scale a membrane time constant τm10--15 ms.
40.
F.
Devalle
,
A.
Roxin
, and
E.
Montbrió
,
PLoS Comput. Biol.
13
,
e1005881
(
2017
).
41.
D.
Golomb
,
Scholarpedia
2
,
1347
(
2007
).
42.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
43.
From Eqs. (31) and (32), one will be able to calculate z1(0)=2π+g0Kg02K+Γ2+4π2i0KiΓ2πg0K+g02K+Γ2+4π2i0K+iΓ.
44.
D.
Angulo-Garcia
,
S.
Luccioli
,
S.
Olmi
, and
A.
Torcini
,
New J. Phys.
19
,
053011
(
2017
).
45.
H. C.
Tuckwell
,
Introduction to Theoretical Neurobiology. Vol. 1, Linear Cable Theory and Dendritic Structure
(
Cambridge University Press
,
1988
).
46.
M. P.
Nawrot
, in Analysis of Parallel Spike Trains (Springer, 2010), pp. 37–58.
47.
H.
Daido
,
Prog. Theor. Phys.
88
,
1213
(
1992
).
48.
R. E.
Mirollo
,
Chaos
22
,
043118
(
2012
).
49.
N.
Brunel
and
X.-J.
Wang
,
J. Neurophysiol.
90
,
415
(
2003
).
50.
B.
Lindner
,
A.
Longtin
, and
A.
Bulsara
,
Neural Comput.
15
,
1761
(
2003
).
51.
In the majority of programming languages and packages for analytical calculations, complex-valued functions f(z) are defined with arg(z)(π;π], while in our case, one must consider the Bessel functions I±1/3(z) for arg(z)[0;π). Thus, blind calculations of expression for Ag<0 by employing a standard software to perform analytic calculations almost certainly will yield incorrect results for Ag>0, while correct explicit calculations for (Ag)=Ageiπ yield the equation in the second line of (42). One also should bear in mind that I±1/3(z) is a three-sheet analytic function, while I±1/3(x3/2) is a two-sheet one.
52.
A.
Lerchner
,
C.
Ursta
,
J.
Hertz
,
M.
Ahmadi
,
P.
Ruffiot
, and
S.
Enemark
,
Neural Comput.
18
,
634
(
2006
).
53.
K. A.
Takeuchi
and
H.
Chaté
,
J. Phys. A: Math. Theor.
46
,
254007
(
2013
).
54.
A.
Politi
,
A.
Torcini
, and
S.
Lepri
,
J. Phys. IV
8(Pr6)
,
Pr6-263
(
1998
).
55.
F.
Ginelli
,
P.
Poggi
,
A.
Turchi
,
H.
Chaté
,
R.
Livi
, and
A.
Politi
,
Phys. Rev. Lett.
99
,
130601
(
2007
).
56.
I. D.
Landau
,
R.
Egger
,
V. J.
Dercksen
,
M.
Oberlaender
, and
H.
Sompolinsky
,
Neuron
92
,
1106
(
2016
).
57.
R.
Pyle
and
R.
Rosenbaum
,
Phys. Rev. E
93
,
040302
(
2016
).
58.
S.
Luccioli
and
A.
Politi
,
Phys. Rev. Lett.
105
,
158104
(
2010
).
59.
S.
Olmi
,
R.
Livi
,
A.
Politi
, and
A.
Torcini
,
Phys. Rev. E
81
,
046119
(
2010
).
60.
S.
Olmi
,
A.
Politi
, and
A.
Torcini
,
Europhys. Lett.
92
,
60007
(
2011
).
61.
R.
Srinivasan
,
W. R.
Winter
,
J.
Ding
, and
P. L.
Nunez
,
J. Neurosci. Methods
166
,
41
(
2007
).
62.
M.
Volgushev
,
S.
Chauvette
, and
I.
Timofeev
,
Prog. Brain Res.
193
,
181
(
2011
).
63.
M.
Okun
,
P.
Yger
,
S. L.
Marguet
,
F.
Gerard-Mercier
,
A.
Benucci
,
S.
Katzner
,
L.
Busse
,
M.
Carandini
, and
K. D.
Harris
,
J. Neurosci.
32
,
17108
(
2012
).
64.
M.
Mattia
and
P.
Del Giudice
,
Phys. Rev. E
66
,
051917
(
2002
).
65.
M. J.
Richardson
and
R.
Swarbrick
,
Phys. Rev. Lett.
105
,
178102
(
2010
).
66.
S.
Olmi
,
D.
Angulo-Garcia
,
A.
Imparato
, and
A.
Torcini
,
Sci. Rep.
7
,
1577
(
2017
).
67.
One should check two properties here. First, for z=ρeiφ, one finds J1/l(ρeiφ)±J1/l(ρeiφ)=eiφ/lm=0C1/l,mρ2m+1/lei2mφ±eiφ/lm=0C1/l,mρ2m1/lei2mφ. If φ=nπ with integer n, then e2mφ=1 and the sums yield the Bessel functions of the first kind with a series of zeros; if φ=(n+1/2)π, then e2mφ=(1)m and the sums yield the Bessel functions of the second kind with no zeros; for any other value of φ, the sums yield a complex-valued function of real-valued ρ and generally will have no zeros. However, for φ=nπ, J1/l(z)±J1/l(z)=eiφ/lJ1/l(ρ)±eiφ/lJ1/l(ρ), and these two terms can sum up to zero only if φ/l(φ/l)=jπ with integer j. Note, while for integer α, function Jα(ρ)=(1)αJα(ρ), for noninteger α (in our case, α=1/3), functions Jα(ρ) and Jα(ρ) are independent and the degenerate case of coinciding zeros of Jα(ρ)=0 and Jα(ρ)=0 is not possible. Combining conditions φ=jlπ/2 and φ=nπ, for odd l, we find that the function of our interest can have zeros only for φ=lnπ=3πn. Second, the crossings of the abscissa axis by the function J1/3(x3/2)±J1/3(x3/2) are all transversal; i.e., the function possesses only first order zeros.
You do not currently have access to this content.