This paper applies existing and new approaches to study trends in the performance of elite athletes over time. We study both track and field scores of men and women athletes on a yearly basis from 2001 to 2019, revealing several trends and findings. First, we perform a detailed regression study to reveal the existence of an “Olympic effect,” where average performance improves during Olympic years. Next, we study the rate of change in athlete performance and fail to reject the notion that athlete scores are leveling off, at least among the top 100 annual scores. Third, we examine the relationship in performance trends among men and women’s categories of the same event, revealing striking similarity, together with some anomalous events. Finally, we analyze the geographic composition of the world’s top athletes, attempting to understand how the diversity by country and continent varies over time across events. We challenge a widely held conception of athletics that certain events are more geographically dominated than others. Our methods and findings could be applied more generally to identify evolutionary dynamics in group performance and highlight spatiotemporal trends in group composition.

1.
W.
Elderton
and
G. H.
Wood
, “
Cricket scores and some skew correlation distributions: (an arithmetical study)
,”
J. R. Stat. Soc.
108
,
1
(
1945
).
2.
A. C.
Kimber
and
A. R.
Hansford
, “
A statistical analysis of batting in cricket
,”
J. R. Stat. Soc. Series A
156
,
443
(
1993
).
3.
A.
Gabel
and
S.
Redner
, “
Random walk picture of basketball scoring
,”
J. Quant. Anal. Sports
8
,
1
(
2012
).
4.
T.
Pawlowski
, “
Testing the uncertainty of outcome hypothesis in European professional football
,”
J. Sports Econ.
14
,
341
367
(
2013
).
5.
P. P.-Y.
Wu
,
L.
Garufi
,
C.
Drovandi
,
K.
Mengersen
,
L. J.
Mitchell
,
M. A.
Osborne
, and
D. B.
Pyne
, “
Bayesian prediction of winning times for elite swimming events
,”
J. Sports Sci.
2021
,
1
8
(
2021
).
6.
J. H. J.
Einmahl
and
J. R.
Magnus
, “
Records in athletics through extreme-value theory
,”
J. Am. Stat. Assoc.
103
,
1382
1391
(
2008
).
7.
M. E.
Robinson
and
J. A.
Tawn
, “
Statistics for exceptional athletics records
,”
Appl. Stat.
44
,
499
(
1995
).
8.
D.
Gembris
,
J. G.
Taylor
, and
D.
Suter
, “
Trends and random fluctuations in athletics
,”
Nature
417
,
506
(
2002
).
9.
M. I.
Barão
and
J. A.
Tawn
, “
Extremal analysis of short series with outliers: Sea-levels and athletics records
,”
J. R. Stat. Soc. Ser. C Appl. Stat.
48
,
469
487
(
1999
).
10.
H. V.
Ribeiro
,
S.
Mukherjee
, and
X. H. T.
Zeng
, “
Anomalous diffusion and long-range correlations in the score evolution of the game of cricket
,”
Phys. Rev. E
86
,
022102
(
2012
).
11.
S.
Merritt
and
A.
Clauset
, “
Scoring dynamics across professional team sports: Tempo, balance and predictability
,”
EPJ Data Sci.
3
,
4
(
2014
).
12.
A.
Clauset
,
M.
Kogan
, and
S.
Redner
, “
Safe leads and lead changes in competitive team sports
,”
Phys. Rev. E
91
,
062815
(
2015
).
13.
D. P.
Kiley
,
A. J.
Reagan
,
L.
Mitchell
,
C. M.
Danforth
, and
P. S.
Dodds
, “
Game story space of professional sports: Australian rules football
,”
Phys. Rev. E
93
,
052314
(
2016
).
14.
N.
James
and
M.
Menzies
, “
COVID-19 in the United States: Trajectories and second surge behavior
,”
Chaos
30
,
091102
(
2020
).
15.
G.
Chowell
,
L.
Sattenspiel
,
S.
Bansal
, and
C.
Viboud
, “
Mathematical models to characterize early epidemic growth: A review
,”
Phys. Life Rev.
18
,
66
97
(
2016
).
16.
N.
James
,
M.
Menzies
, and
P.
Radchenko
, “
COVID-19 second wave mortality in Europe and the United States
,”
Chaos
31
,
031105
(
2021
).
17.
C.
Manchein
,
E. L.
Brugnago
,
R. M.
da Silva
,
C. F. O.
Mendes
, and
M. W.
Beims
, “
Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies
,”
Chaos
30
,
041102
(
2020
).
18.
B.
Blasius
, “
Power-law distribution in the number of confirmed COVID-19 cases
,”
Chaos
30
,
093123
(
2020
).
19.
N.
James
and
M.
Menzies
, “
Trends in COVID-19 prevalence and mortality: A year in review
,”
Phys. D
425
,
132968
(
2021
).
20.
N.
James
and
M.
Menzies
, “
Estimating a continuously varying offset between multivariate time series with application to COVID-19 in the United States
,”
Eur. Phys. J. Spec. Top.
(published online,
2022
).
21.
S.
Drożdż
,
J.
Kwapień
,
P.
Oświęcimka
,
T.
Stanisz
, and
M.
Wątorek
, “
Complexity in economic and social systems: Cryptocurrency market at around COVID-19
,”
Entropy
22
,
1043
(
2020
).
22.
N.
James
and
M.
Menzies
, “
Association between COVID-19 cases and international equity indices
,”
Phys. D
417
,
132809
(
2021
).
23.
S.
Drożdż
,
J.
Kwapień
, and
P.
Oświęcimka
, “
Complexity in economic and social systems
,”
Entropy
23
,
133
(
2021
).
24.
N.
James
and
M.
Menzies
, “
Efficiency of communities and financial markets during the 2020 pandemic
,”
Chaos
31
,
083116
(
2021
).
25.
S.
Drożdż
,
L.
Minati
,
P.
Oświęcimka
,
M.
Stanuszek
, and
M.
Wątorek
, “
Competition of noise and collectivity in global cryptocurrency trading: Route to a self-contained market
,”
Chaos
30
,
023122
(
2020
).
26.
N.
James
and
M.
Menzies
, “
A new measure between sets of probability distributions with applications to erratic financial behavior
,”
J. Stat. Mech.: Theory Exp.
2021
,
123404
.
27.
M.
Wątorek
,
S.
Drożdż
,
J.
Kwapień
,
L.
Minati
,
P.
Oświęcimka
, and
M.
Stanuszek
, “
Multiscale characteristics of the emerging global cryptocurrency market
,”
Phys. Rep.
901
,
1
(
2020
).
28.
A.
Prakash
,
N.
James
,
M.
Menzies
, and
G.
Francis
, “
Structural clustering of volatility regimes for dynamic trading strategies
,”
Appl. Math. Finance
(published online,
2022
).
29.
A.
Vazquez
, “
Polynomial growth in branching processes with diverging reproductive number
,”
Phys. Rev. Lett.
96
,
038702
(
2006
).
30.
C. F.
Mendes
and
M. W.
Beims
, “
Distance correlation detecting Lyapunov instabilities, noise-induced escape times and mixing
,”
Phys. A
512
,
721
730
(
2018
).
31.
K.
Shang
,
B.
Yang
,
J. M.
Moore
,
Q.
Ji
, and
M.
Small
, “
Growing networks with communities: A distributive link model
,”
Chaos
30
,
041101
(
2020
).
32.
H. W.
Hethcote
, “
The mathematics of infectious diseases
,”
SIAM Rev.
42
,
599
653
(
2000
).
33.
M.
Perc
,
N. G.
Miksić
,
M.
Slavinec
, and
A.
Stožer
, “
Forecasting COVID-19
,”
Front. Phys.
8
,
127
(
2020
).
34.
R.
Moeckel
and
B.
Murray
, “
Measuring the distance between time series
,”
Phys. D
102
,
187
194
(
1997
).
35.
G. J.
Székely
,
M. L.
Rizzo
, and
N. K.
Bakirov
, “
Measuring and testing dependence by correlation of distances
,”
Ann. Stat.
35
,
2769
2794
(
2007
).
36.
C. F. O.
Mendes
,
R. M.
da Silva
, and
M. W.
Beims
, “
Decay of the distance autocorrelation and Lyapunov exponents
,”
Phys. Rev. E
99
,
062206
(
2019
).
37.
N.
James
,
M.
Menzies
,
L.
Azizi
, and
J.
Chan
, “
Novel semi-metrics for multivariate change point analysis and anomaly detection
,”
Phys. D
412
,
132636
(
2020
).
38.
A.
Karaivanov
, “
A social network model of COVID-19
,”
PLoS One
15
,
e0240878
(
2020
).
39.
J.
Ge
,
D.
He
,
Z.
Lin
,
H.
Zhu
, and
Z.
Zhuang
, “
Four-tier response system and spatial propagation of COVID-19 in China by a network model
,”
Math. Biosci.
330
,
108484
(
2020
).
40.
L.
Xue
,
S.
Jing
,
J. C.
Miller
,
W.
Sun
,
H.
Li
,
J. G.
Estrada-Franco
,
J. M.
Hyman
, and
H.
Zhu
, “
A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy
,”
Math. Biosci.
326
,
108391
(
2020
).
41.
J. A. T.
Machado
and
A. M.
Lopes
, “
Rare and extreme events: The case of COVID-19 pandemic
,”
Nonlinear Dyn.
100
,
2953
(
2020
).
42.
C. N.
Ngonghala
,
E. A.
Iboi
, and
A. B.
Gumel
, “
Could masks curtail the post-lockdown resurgence of COVID-19 in the US?
,”
Math. Biosci.
329
,
108452
(
2020
).
43.
J.
Cavataio
and
S.
Schnell
, “
Interpreting SARS-CoV-2 seroprevalence, deaths, and fatality rate—Making a case for standardized reporting to improve communication
,”
Math. Biosci.
333
,
108545
(
2021
).
44.
L. Ó.
Náraigh
and
Á.
Byrne
, “
Piecewise-constant optimal control strategies for controlling the outbreak of COVID-19 in the Irish population
,”
Math. Biosci.
330
,
108496
(
2020
).
45.
D. H.
Glass
, “
European and US lockdowns and second waves during the COVID-19 pandemic
,”
Math. Biosci.
330
,
108472
(
2020
).
46.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning
(
Springer
,
New York
,
2009
).
47.
H. L. N.
Nguefack
,
M. G.
Pagé
,
J.
Katz
,
M.
Choinière
,
A.
Vanasse
,
M.
Dorais
,
O. M.
Samb
, and
A.
Lacasse
, “
Trajectory modelling techniques useful to epidemiological research: A comparative narrative review of approaches
,”
Clin. Epidemiol.
12
,
1205
1222
(
2020
).
48.
D. S.
Nagin
, “
Group-based trajectory modeling: An overview
,”
Ann. Nutr. Metab.
65
,
205
210
(
2014
).
49.
N.
James
,
M.
Menzies
, and
J.
Chan
, “
Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19
,”
Phys. A
565
,
125581
(
2021
).
50.
N.
James
and
M.
Menzies
, “
Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time
,”
Nonlinear Dyn.
(published online,
2022
).
51.
D.
Müllner
, “
fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python
,”
J. Stat. Softw.
53
,
1
(
2013
).
52.
N.
James
,
M.
Menzies
, and
H.
Bondell
, “
Understanding spatial propagation using metric geometry with application to the spread of COVID-19 in the United States
,”
Europhys. Lett.
135
,
48004
(
2021
).
53.
World Athletics, home page, see https://www.worldathletics.org/records/toplists/ (2021); accessed September 1, 2021.
54.
K.
Ott
and
M. V.
Puymbroeck
, See https://thesportjournal.org/article/does-the-media-impact-athletic-performance/ for “Does the Media Impact Athletic Performance?,” The Sport Journal, March 14, 2008.
55.
G.
Berthelot
et al., “
Athlete atypicity on the edge of human achievement: Performances stagnate after the last peak, in 1988
,”
PLoS One
5
,
e8800
(
2010
).
56.
J.
McCurry
, See https://www.theguardian.com/business/grogonomics/2021/jul/29/as-olympic-athletics-begins-the-data-suggests-we-are-at-the-peak-of-human-ability for “As Olympic Athletics Begins, the Data Suggests We Are at the Peak of Human Ability,” The Guardian, July 29, 2021.
57.
M.
Brooks
, See https://www.theguardian.com/commentisfree/2014/jul/21/jamaicans-sprinting-athletics-commonwealth-games for “Why Are Jamaicans So Good at Sprinting?,” The Guardian, July 21, 2014.
58.
S. I.
Vrieze
, “
Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
,”
Psychol. Methods
17
,
228
243
(
2012
).
You do not currently have access to this content.