A derivation of the diffusion equation is presented using the maximum caliber principle and the continuity equation for a system composed of paths traveled by a free particle in a time interval. By identifying the diffusion coefficient in the obtained diffusion equation, it is shown that there is an inverse proportionality relationship concerning the particle’s mass so that a higher mass is related to lower diffusion, and the lower mass is connected to the higher diffusion. This relationship is also shown using Monte Carlo simulations to sample the path space for a free particle system and then using the time slicing equation to obtain the probability of the particle position for each time showing the diffusion behavior for different masses.

1.
E. T.
Jaynes
, “
Information theory and statistical mechanics
,”
Phys. Rev.
106
,
620
630
(
1957
).
2.
E. T.
Jaynes
, “
Information theory and statistical mechanics II
,”
Phys. Rev.
108
,
171
180
(
1957
).
3.
S.
Chib
, “
Markov chain Monte Carlo methods: Computation and inference
,”
Handb. Econom.
5
,
3569
3649
(
2001
).
4.
M. E.
Davies
, “
Nonlinear noise reduction through Monte Carlo sampling
,”
Chaos
8
,
775
(
1998
).
5.
K.
Huang
,
Statistical Mechanics
(
Wiley
,
1987
).
6.
R.
Soto
,
Kinetic Theory and Transport Phenomena
(
Oxford Master Series in Physics
,
2016
).
7.
A.
Einstein
, “
Uber die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen
,”
Ann. Phys.
322
(
8
),
549
560
(
1905
).
8.
M.
von Smoluchowski
, “
Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen
,”
Ann. Phys.
326
(
14
),
756
780
(
1906
).
9.
D.
González
,
D.
Diaz
, and
S.
Davis
, “
Continuity equation for probability as a requirement of inference over paths
,”
Eur. Phys. J. B
89
,
214
(
2016
).
10.
W. K.
Hastings
, “
Monte Carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
,
97
109
(
1970
).
11.
D.
Tapias
,
D. P.
Sanders
, and
E. G.
Altmann
, “
Monte Carlo sampling in diffusive dynamical systems
,”
Chaos
28
,
053113
(
2018
).
12.
D.
González
,
S.
Davis
, and
G.
Gutiérrez
, “
Newtonian dynamics from the principle of maximum caliber
,”
Found. Phys.
44
,
923
(
2014
).
13.
S.
Davis
and
D.
Gonzalez
, “
Hamiltonian formalism and path entropy maximization
,”
J. Phys. A: Math. Theor.
48
(
42
),
425003
(
2015
).
14.
D.
González
and
S.
Davis
, “
The maximum caliber principle applied to continuous systems
,”
J. Phys.: Conf. Ser.
720
,
012006
(
2016
).
15.
E. T.
Jaynes
, “
The minimum entropy production principle
,”
Ann. Rev. Phys. Chem.
31
,
579
601
(
1980
).
16.
E. T.
Jaynes
, “
On the rationale of maximum-entropy methods
,”
Proc. IEEE
10
,
939
952
(
1982
).
17.
P.
Attard
,
Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation
(
Academic Press
,
2002
).
18.
A.
Caticha
, “Lectures on probability, entropy, and statistical physics,” arXiv:physics.class-ph/0710.1071v1 (2008).
19.
H.
Kleinert
,
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
(
World Scientific Publishing
,
2005
).
20.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
2005
).
21.
M.
Kac
, “
On distributions of certain Wiener functionals
,”
Trans. Am. Math. Soc.
65
,
1
13
(
1949
).
22.
R. P.
Feynman
and
L.
Brown
,
Feynman’s Thesis: A New Approach to Quantum Theory
(
World Scientific Publishing Co. Pte. Ltd.
,
2005
).
23.
S.
Machlup
and
L.
Onsager
, “
Fluctuations and irreversible process. II. Systems with kinetic energy
,”
Phys. Rev.
91
,
1512
(
1953
).
24.
D.
Gonzalez
,
S.
Davis
, and
S.
Curilef
, “
Solving equations of motion by using Monte Carlo metropolis: Novel method via random paths sampling and the maximum caliber principle
,”
Entropy
22
(
9
),
916
(
2020
).
25.
E. M.
Purcell
,
Electricidad y Magnetismo
(
Berkeley Physics Course
,
1988
), Vol. 2.
26.
D.
Gonzalez
and
S.
Davis
, “
Liouville’s theorem from the principle of maximum caliber in phase space
,”
AIP Conf. Proc.
1757
,
020003
(
2016
).
27.
S.
Davis
and
G.
Gutiérrez
, “
Conjugate variables in continuous maximum-entropy inference
,”
Phys. Rev. E
86
,
051136
(
2012
).
28.
H.
Haken
, “
A new access to path integrals and Fokker-Planck equations via the maximum caliber principle
,”
Z. Phys. B: Condens. Matter
63
,
505
510
(
1986
).
29.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
2001
).
30.
E.
Nelson
, “
Derivation of the Schrödinger equation from Newtonian mechanics
,”
Phys. Rev.
150
,
1079
1085
(
1966
).
31.
A.
Caticha
, “
Entropic dynamics
,”
Entropy
17
,
6110
6128
(
2015
).
32.
P.
Pessoa
,
F. X.
Costa
, and
A.
Caticha
, “
Entropic dynamics on Gibbs statistical manifolds
,”
Entropy
23
(
5
),
494
(
2021
).
33.
M. C.
Parker
and
C.
Jeynes
, “
Maximum entropy (most likely) double helical and double logarithmic spiral trajectories in space-time
,”
Sci. Rep.
9
,
10779
(
2019
).
34.
P.
Cordoba
,
J.
Isidro
, and
M.
Perea
, “
Emergence from irreversibility
,”
J. Phys.: Conf. Ser.
442
,
012033
(
2013
).
35.
L. V.
Abad
, “
Principles of classical statistical mechanics: A perspective from the notion of complementarity
,”
Ann. Phys.
327
,
1682
1693
(
2012
).
36.
S.
Davis
,
D.
Gonzalez
, and
G.
Gutierrez
, “
Probabilistic inference for dynamical systems
,”
Entropy
20
(
9
),
696
(
2018
).
You do not currently have access to this content.