According to Thirring’s condition, the thermodynamic equilibrium is not possible between two systems with negative heat capacities. Since the existence of negative heat capacity is a rule rather an exception in astrophysics, we would like to analyze the possibility of the thermodynamic equilibrium for a paradigmatic astrophysical situation: the binary system. The possible explanation arises after decomposing the dynamical variables into internal and collective degrees of freedom, which enables us to reinterpret binary systems as two systems A and B that interact between them through a third low dimensional system C. Our central result is the derivation of a Langevin equation to describe the dynamics of the collective degrees of freedom. Our preliminary analysis evidences that the proposed framework is able not only to describe the system stability, but also unstable processes, such as escape or collapse of the binary system. These processes crucially depend on the angular momentum, the quadrupole–orbit coupling among internal and collective degrees of freedom, as well as internal temperatures of each system.

1.
A.
Eddington
, “
The kinetic energy of a star-clusters
,”
Mon. Not. R. Astron. Soc.
76
,
525
528
(
1916
).
2.
D.
Lynden-Bell
,
R.
Wood
, and
A.
Royal
, “
The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems
,”
Mon. Not. R. Astron. Soc.
138
,
495
525
(
1968
).
3.
D.
Lynden-Bell
and
R.
Lynden-Bell
, “
On the negative specific heat paradox
,”
Mon. Not. R. Astron. Soc.
181
,
405
419
(
1977
).
4.
D.
Lynden-Bell
, “
Negative specific heat in astronomy, physics and chemistry
,”
Physica A
263
,
293
304
(
1999
).
5.
W.
Thirring
, “
Systems with negative specific heat
,”
Z. Phys. A: Hadrons Nucl.
235
,
339
352
(
1970
).
6.
P.
Hertel
and
W.
Thirring
, “A soluble model for a system with negative specific heat,” in Nuclear, Particle and Many Body Physics (Elsevier, 1972), pp. 520–533.
7.
J.
Katz
, “
Thermodynamics of self-gravitating systems
,”
Found. Phys.
33
,
223
269
(
2003
).
8.
P.-H.
Chavanis
, “
Phase transitions in self-gravitating systems
,”
Int. J. Mod. Phys. B
20
,
3113
3198
(
2006
).
9.
A.
Campa
,
T.
Dauxois
,
D.
Fanelli
, and
S.
Ruffo
,
Physics of Long-Range Interacting Systems
(
Oxford University Press
,
Oxford
,
2014
).
10.
T.
Padmanabhan
, “
Statistical mechanics of gravitating systems
,”
Phys. Rep.
188
,
285
362
(
1990
).
11.
L. G.
Moretto
,
R.
Ghetti
,
L.
Phair
,
K.
Tso
, and
G.
Wozniak
, “
Reducibility and thermal scaling in nuclear multifragmentation
,”
Phys. Rep.
287
,
249
336
(
1997
).
12.
M.
D’agostino
,
R.
Bougault
,
F.
Gulminelli
,
M.
Bruno
,
F.
Cannata
,
P.
Chomaz
,
F.
Gramegna
,
I.
Iori
,
N.
Le Neindre
,
G.
Margagliotti
et al., “
On the reliability of negative heat capacity measurements
,”
Nucl. Phys. A
699
,
795
818
(
2002
).
13.
M.
Ison
,
A.
Chernomoretz
, and
C.
Dorso
, “
Caloric curves in two- and three-dimensional Lennard-Jones-like systems including long-range forces
,”
Physica A
341
,
389
400
(
2004
).
14.
B.
Einarsson
, “
Conditions for negative specific heat in systems of attracting classical particles
,”
Phys. Lett. A
332
,
335
344
(
2004
).
15.
F.
Gobet
,
B.
Farizon
,
M.
Farizon
,
M.
Gaillard
,
J.
Buchet
,
M.
Carré
,
P.
Scheier
, and
T.
Märk
, “
Direct experimental evidence for a negative heat capacity in the liquid-to-gas phase transition in hydrogen cluster ions: Backbending of the caloric curve
,”
Phys. Rev. Lett.
89
,
183403
(
2002
).
16.
M.
Schmidt
,
R.
Kusche
,
T.
Hippler
,
J.
Donges
,
W.
Kronmüller
,
B.
Von Issendorff
, and
H.
Haberland
, “
Negative heat capacity for a cluster of 147 sodium atoms
,”
Phys. Rev. Lett.
86
,
1191
(
2001
).
17.
V.
Antonov
, “Vestnik Leningradskogo Universiteta 7, 135; translation, 1995,” in IAU Symposium (1962), Vol. 113, p. 525.
18.
A.
Ramírez-Hernández
,
H.
Larralde
, and
F.
Leyvraz
, “
Violation of the zeroth law of thermodynamics in systems with negative specific heat
,”
Phys. Rev. Lett.
100
,
120601
(
2008
).
19.
L.
Velazquez
, “
Remarks about the thermodynamics of astrophysical systems in mutual interaction and related notions
,”
J. Stat. Mech.: Theory Exp.
2016
,
033105
.
20.
R. P.
Feynman
,
The Feynman Lectures on Physics
(
Narosa
,
1986
), Vol. 1.
21.
J. M.
Parrondo
and
P.
Español
, “
Criticism of Feynman’s analysis of the ratchet as an engine
,”
Am. J. Phys.
64
,
1125
1130
(
1996
).
22.
K.
Sekimoto
, “
Kinetic characterization of heat bath and the energetics of thermal ratchet models
,”
J. Phys. Soc. Jpn.
66
,
1234
1237
(
1997
).
23.
P.
Visco
, “
Work fluctuations for a Brownian particle between two thermostats
,”
J. Stat. Mech.: Theory Exp.
2006
,
P06006
.
24.
J.
Binney
and
S.
Tremaine
,
Galactic Dynamics
(
Princeton University Press
,
2011
), Vol. 13.
25.
E. V.
Votyakov
,
H. I.
Hidmi
,
A.
de Martino
, and
D. H.
Gross
, “
Microcanonical mean-field thermodynamics of self-gravitating and rotating systems
,”
Phys. Rev. Lett.
89
,
031101
(
2002
).
26.
Y. J.
Gomez-Leyton
and
L.
Velazquez
, “
Truncated γ-exponential models: Evaporation and mass-segregation effects in the bi-component system
,”
Mon. Not. R. Astron. Soc.
488
,
362
380
(
2019
).
27.
S.
Chandrasekhar
, “
Dynamical friction. I. General considerations: The coefficient of dynamical friction
,”
Astrophys. J.
97
,
255
(
1943
).
28.
I. R.
King
, “
The structure of star clusters. III. Some simple dynamical models
,”
Astron. J.
71
,
64
(
1966
).
29.
P. E.
Kloeden
,
E.
Platen
, and
H.
Schurz
,
Numerical Solution of SDE Through Computer Experiments
(
Springer Science & Business Media
,
2012
).
30.
L.
Casetti
and
M.
Pettini
, “
Analytic computation of the strong stochasticity threshold in Hamiltonian dynamics using Riemannian geometry
,”
Phys. Rev. E
48
,
4320
(
1993
).
31.
I.
King
, “
The structure of star clusters. I. An empirical density law
,”
Astron. J.
67
,
471
(
1962
).
32.
L.
Spitzer
, Jr.
, “
Disruption of galactic clusters
,”
Astrophys. J.
127
,
17
(
1958
).
You do not currently have access to this content.