Advanced numerical models used for climate prediction are known to exhibit biases in their simulated climate response to variable concentrations of the atmospheric greenhouse gases and aerosols that force a non-uniform, in space and time, secular global warming. We argue here that these biases can be particularly pronounced due to misrepresentation, in these models, of the multidecadal internal climate variability characterized by large-scale, hemispheric-to-global patterns. This point is illustrated through the development and analysis of a prototype climate model comprised of two damped linear oscillators, which mimic interannual and multidecadal internal climate dynamics and are set into motion via a combination of stochastic driving, representing weather noise, and deterministic external forcing inducing a secular climate change. The model time series are paired with pre-specified patterns in the physical space and form, conceptually, a spatially extended time series of the zonal-mean near-surface temperature, which is further contaminated by a spatiotemporal noise simulating the rest of climate variability. The choices of patterns and model parameters were informed by observations and climate-model simulations of the 20th century near-surface air temperature. Our main finding is that the intensity and spatial patterns of the internal multidecadal variability associated with the slow-oscillator model component greatly affect (i) the ability of modern pattern-recognition/fingerprinting methods to isolate the forced response of the climate system in the 20th century ensemble simulations and (ii) climate-system predictability, especially decadal predictability, as well as the estimates of this predictability using climate models in which the internal multidecadal variability is underestimated or otherwise misrepresented.

1.
Barnes
,
E. A.
,
Hurrell
,
J. W.
,
Ebert-Uphoff
,
I.
,
Anderson
,
C.
, and
Anderson
,
D.
, “
Viewing forced climate patterns through an AI lens
,”
Geophys. Res. Lett.
46
,
13389
13398
, https://doi.org/10.1029/2019GL084944 (
2019
).
2.
Barnes
,
E. A.
,
Toms
,
B.
,
Hurrell
,
J. W.
,
Ebert-Uphoff
,
I.
,
Anderson
,
C.
, and
Anderson
,
D.
, “
Indicator patterns of forced change learned by an artificial neural network
,”
J. Adv. Model. Earth Syst.
12
,
e2020MS002195
(
2020
).
3.
Booth
,
B. B. B.
,
Dunstone
,
N. J.
,
Halloran
,
P. R.
,
Andrews
,
T.
, and
Bellouin
,
N.
, “
Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability
,”
Nature
484
,
228
232
(
2012
).
4.
Buckley
,
M. W.
and
Marshall
,
J.
, “
Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review
,”
Rev. Geophys.
54
,
5
63
, https://doi.org/10.1002/2015RG000493 (
2016
).
5.
Cassou
,
C.
,
Kushnir
,
Y.
,
Hawkins
,
E.
,
Pirani
,
A.
,
Kucharski
,
F.
,
Kang
,
I.-S.
, and
Caltabiano
,
N.
, “
Decadal climate variability and predictability: Challenges and opportunities
,”
Bull. Am. Meteorol. Soc.
99
,
479
490
(
2018
).
6.
Chekroun
,
M. D.
,
Tantet
,
A.
,
Dijkstra
,
H. A.
 et al, “
Ruelle–pollicott resonances of stochastic systems in reduced state space. Part I: Theory
,”
J. Stat. Phys.
179
,
1366
1402
(
2020
).
7.
Cohen
,
J.
,
Zhang
,
X.
,
Francis
,
J.
 et al, “
Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather
,”
Nat. Clim. Change
10
,
20
29
(
2020
).
8.
DelSole
,
T.
and
Tippett
,
M. K.
, “
Average predictability time. Part II: Seamless diagnosis of predictability on multiple time scales
,”
J. Atmos. Sci.
66
,
1188
1204
(
2009
).
9.
DelSole
,
T.
,
Tippett
,
M. K.
, and
Shukla
,
J.
, “
A significant component of unforced multidecadal variability in the recent acceleration of global warming
,”
J. Clim.
24
,
909
926
(
2011
).
10.
Deser
,
C.
,
Phillips
,
A.
,
Alexander
,
M. A.
, and
Smoliak
,
B. V.
, “
Projecting North American climate over the next 50 years: Uncertainty due to internal variability
,”
J. Clim.
27
,
2271
2296
(
2014
).
11.
Deser
,
C.
,
Phillips
,
A.
,
Bourdette
,
V.
, and
Teng
,
H.
, “
Uncertainty in climate change projections: The role of internal variability
,”
Clim. Dyn.
38
,
527
546
(
2012
).
12.
Dong
,
B.
,
Sutton
,
R. T.
, and
Scaife
,
A. A.
, “
Multidecadal modulation of El Niño Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures
,”
Geophys. Res. Lett.
3
,
L08705
, https://doi.org/10.1029/2006GL025766 (
2006
).
13.
Eyring
,
V.
,
Bony
,
S.
,
Meehl
,
G. A.
,
Senior
,
C. A.
,
Stevens
,
B.
,
Stouffer
,
R. J.
, and
Taylor
,
K. E.
, “
Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
,”
Geosci. Model Dev.
9
,
1937
1958
(
2016
).
14.
Fraser
,
N. J.
and
Cunningham
,
S. A.
, “
120 years of AMOC variability reconstructed from observations using the Bernoulli inverse
,”
Geophys. Res. Lett.
48
(
18
),
e2021GL093893
, https://doi.org/10.1029/2021GL093893 (
2021
).
15.
Gavrilov
,
A.
,
Kravtsov
,
S.
, and
Mukhin
,
D.
, “
Analysis of 20th century surface air temperature using linear dynamical modes
,”
Chaos
30
(
12
),
123110
(
2020
).
16.
Gavrilov
,
A.
,
Mukhin
,
D.
,
Loskutov
,
E.
,
Volodin
,
E.
,
Feigin
,
A.
, and
Kurths
,
J.
, “
Method for reconstructing nonlinear modes with adaptive structure from multidimensional data
,”
Chaos
26
(
12
),
123101
(
2016
).
17.
Gavrilov
,
A.
,
Seleznev
,
A.
,
Mukhin
,
D.
,
Loskutov
,
E.
,
Feigin
,
A.
, and
Kurths
,
J.
, “
Linear dynamical modes as new variables for data-driven ENSO forecast
,”
Clim. Dyn.
52
(
3–4
),
2199
2216
(
2019
).
18.
Ghil
,
M.
and
Lucarini
,
V.
, “
The physics of climate variability and climate change
,”
Rev. Mod. Phys.
92
,
035002
(
2020
).
19.
Gutiérrez
,
M. N.
and
Lucarini
,
V.
, “
On some aspects of the response to stochastic and deterministic forcings
,”
J. Phys. A: Math. Theor.
55
,
425002
(
2022
).
20.
Hannachi
,
A.
,
Jolliffe
,
I. T.
, and
Stephenson
,
D. B.
, “
Empirical orthogonal functions and related techniques in atmospheric science: A review
,”
Int. J. Climatol.
27
(
9
),
1119
1152
(
2007
).
21.
Jajcay
,
N.
,
Kravtsov
,
S.
,
Sugihara
,
G.
,
Tsonis
,
A. A.
, and
Palus
,
M.
, “
Synchronization and causality across time scales in El Nino/Southern Oscillation
,”
npj Clim. Atmos. Sci.
1
,
33
(
2018
).
22.
Jolliffe
,
I. T.
,
Principal Component Analysis
, 2nd ed., Springer Series in Statistics (
Springer
,
New York
,
1986
).
23.
Kay
,
J. E.
,
Deser
,
C.
,
Phillips
,
A.
 et al, “
The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability
,”
Bull. Am. Meteorol. Soc.
96
,
1333
1349
(
2015
).
24.
Keenlyside
,
N. S.
,
Ba
,
J.
,
Mecking
,
J.
,
Omrani
,
N. E.
,
Latif
,
M.
,
Zhang
,
R.
, and
Msadek
,
R.
, “
North Atlantic multi-decadal variability—Mechanisms and predictability
,” in
Climate Change Multidecadal and Beyond
, edited by
C.-P.
Chang
,
M.
Ghil
,
M.
Latif
, and
J. M.
Wallace
(
World Scientific
,
2016
), pp.
141
157
.
25.
Kim
,
H.-M.
,
Webster
,
P. J.
, and
Curry
,
J. A.
, “
Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts
,”
Geophys. Res. Lett.
39
,
L10701
, https://doi.org/10.1029/2012GL051644 (
2012
).
26.
Kim
,
W. M.
,
Yeager
,
S.
,
Chang
,
P.
, and
Danabasoglu
,
G.
, “
Low-frequency North Atlantic climate variability in the Community Earth System Model large ensemble
,”
J. Clim.
31
(
2
),
787
813
(
2018
).
27.
Kirtman
,
B.
 et al, “
Near-term climate change projections and predictability
,” in
Climate Change 2013 The Physical Science Basis
, edited by
T. F.
Stocker
 et al (
Cambridge University Press
,
2013
), pp.
953
1028
.
28.
Kravtsov
,
S.
, “
An empirical model of decadal ENSO variability
,”
Clim. Dyn.
39
,
2377
2391
(
2012
).
29.
Kravtsov
,
S.
, “
Pronounced differences between observed and CMIP5 simulated multidecadal climate variability in the twentieth century
,”
Geophys. Res. Lett.
44
,
5749
5757
, https://doi.org/10.1002/2017GL074016 (
2017
).
30.
Kravtsov
,
S.
, “
Dynamics and predictability of hemispheric-scale multidecadal climate variability in an observationally constrained mechanistic model
,”
J. Clim.
33
,
4599
4620
(
2020
).
31.
Kravtsov
,
S.
and
Callicutt
,
D.
, “
On semi-empirical decomposition of multidecadal climate variability into forced and internally generated components
,”
Int. J. Climatol.
37
,
4417
4433
(
2017
).
32.
Kravtsov
,
S.
,
Grimm
,
C.
, and
Gu
,
S.
, “
Global-scale multidecadal variability missing in the state-of-the-art climate models
,”
npj Clim. Atmos. Sci.
1
,
34
(
2018
).
33.
Kravtsov
,
S.
,
Wyatt
,
M. G.
,
Curry
,
J. A.
, and
Tsonis
,
A. A.
, “
Two contrasting views of multidecadal climate variability in the twentieth century
,”
Geophys. Res. Lett.
41
,
6881
6888
, https://doi.org/10.1002/2014GL061416 (
2014
).
34.
Latif
,
M.
,
Collins
,
M.
,
Pohlmann
,
H.
, and
Keenlyside
,
N.
, “
A review of predictability studies of the Atlantic sector climate on decadal time scales
,”
J. Clim.
19
,
5971
5987
(
2006
).
35.
Lucarini
,
V.
, “
Revising and extending the linear response theory for statistical mechanical systems: Evaluating observables as predictors and predictands
,”
J. Stat. Phys.
173
,
1698
1721
(
2018
).
36.
Meehl
,
G. A.
 et al, “
Decadal climate prediction: An update from the trenches
,”
Bull. Am. Meteorol. Soc.
95
,
243
267
(
2014
).
37.
Monahan
,
A. H.
,
Fyfe
,
J. C.
,
Ambaum
,
M. H. P.
,
Stephenson
,
D. B.
, and
North
,
G. R.
, “
Empirical orthogonal functions: The medium is the message
,”
J. Clim.
22
,
6501
6514
(
2009
).
38.
Newman
,
M.
, “
Interannual to decadal predictability of tropical and North Pacific sea surface temperatures
,”
J. Clim.
20
,
2333
2356
(
2007
).
39.
Newman
,
M.
, “
An empirical benchmark for decadal forecasts of global surface temperature anomalies
,”
J. Clim.
26
,
5260
5269
(
2013
).
40.
Newman
,
M.
 et al, “
The Pacific decadal oscillation, revisited
,”
J. Clim.
29
,
4399
4427
(
2016
).
41.
Penland
,
C.
, “
Random forcing and forecasting using principal oscillation pattern analysis
,”
Mon. Weather Rev.
117
,
2165
2185
(
1989
).
42.
Penland
,
C.
and
Sardeshmukh
,
P. D.
, “
The optimal growth of tropical sea surface temperature anomalies
,”
J. Clim.
8
,
1999
2024
(
1995
).
43.
Plevidi
,
M.
,
Smith
,
K. L.
, and
Polvani
,
L. M.
, “
Arctic amplification of climate change: A review of underlying mechanisms
,”
Environ. Res. Lett.
16
,
093003
(
2021
).
44.
Scaife
,
A. A.
and
Smith
,
D.
, “
A signal-to-noise paradox in climate science
,”
npj Clim. Atmos. Sci.
1
,
28
(
2018
).
45.
Schneider
,
T.
and
Griffies
,
S. M.
, “
A conceptual framework for predictability studies
,”
J. Clim.
12
,
3133
3155
(
1999
).
46.
Schneider
,
T.
and
Held
,
I. M.
, “
Discriminants of twentieth-century changes in Earth surface temperatures
,”
J. Clim.
14
,
249
254
(
2001
).
47.
Smith
,
D. M.
,
Scaife
,
A. A.
, and
Kirtman
,
B. P.
, “
What is the current state of scientific knowledge with regard to seasonal and decadal forecasting?
,”
Environ. Res. Lett.
7
,
015602
(
2012
).
48.
Srivastava
,
A.
and
DelSole
,
T.
, “
Decadal predictability without ocean dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
2177
2182
(
2017
).
49.
Steinman
,
B. A.
,
Mann
,
M. E.
, and
Miller
,
S. K.
, “
Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures
,”
Science
347
,
988
991
(
2015
).
50.
Taylor
,
K. E.
,
Stouffer
,
R. J.
, and
Meehl
,
G. A.
, “
An overview of CMIP5 and the experiment design
,”
Bull. Am. Meteorol. Soc.
93
,
485
498
(
2012
).
51.
Ting
,
M.
,
Kushnir
,
Y.
,
Seager
,
R.
, and
Li
,
C.
, “
Forced and internal twentieth-century SST in the North Atlantic
,”
J. Clim.
22
,
1469
1481
(
2009
).
52.
Vimont
,
D. J.
, “
Analysis of the Atlantic meridional mode using linear inverse modeling: Seasonality and regional influences
,”
J. Clim.
25
,
1194
1212
(
2012
).
53.
Wang
,
C.
,
Deser
,
C.
,
Yu
,
J.-Y.
,
DiNezio
,
P.
, and
Clement
,
A.
, “
El Niño-Southern Oscillation (ENSO): A review
,” in
Coral Reefs of the Eastern Pacific
, edited by
P.
Glymn
,
D.
Manzello
, and
I.
Enochs
(
Springer Science Publisher
,
2016
), pp.
85
106
.
55.
Wills
,
R. C. J.
,
Battisti
,
D. S.
,
Armour
,
K. C.
,
Schneider
,
T.
, and
Deser
,
C.
, “
Pattern recognition methods to separate forced responses from internal variability in climate model ensembles and observations
,”
J. Clim.
33
(
20
),
8693
8719
(
2020
).
56.
Wills
,
R. C.
,
Schneider
,
T.
,
Wallace
,
J. M.
,
Battisti
,
D. S.
, and
Hartmann
,
D. L.
, “
Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures
,”
Geophys. Res. Lett.
45
,
2487
2496
, https://doi.org/10.1002/2017GL076327 (
2018
).
57.
Wyatt
,
M. G.
,
Kravtsov
,
S.
, and
Tsonis
,
A. A.
, “
Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability
,”
Clim. Dyn.
38
,
929
949
(
2012
).
58.
Yan
,
X.
,
Zhang
,
R.
, and
Knutson
,
T. R.
, “
Underestimated AMOC variability and implications for AMV and predictability in CMIP models
,”
Geophys. Res. Lett.
45
,
4319
4328
, https://doi.org/10.1029/2018GL077378 (
2018
).
59.
Yeager
,
S. G.
and
Robson
,
J. J.
, “
Recent progress in understanding and predicting decadal climate variability
,”
Curr. Clim. Change Rep.
3
,
112
127
(
2017
).
60.
Zhang
,
R.
,
Delworth
,
T. L.
,
Sutton
,
R.
 et al, “
Have aerosols caused the observed Atlantic multidecadal variability?
,”
J. Atmos. Sci.
70
,
1135
1144
(
2013
).
61.
Zhang
,
R.
 et al, “
A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts
,”
Rev. Geophys.
57
,
316
375
, https://doi.org/10.1029/2019RG000644 (
2019
).

Supplementary Material

You do not currently have access to this content.