Macroscopic magnets can easily be manipulated and positioned so that interactions between themselves and with external fields induce interesting dynamics and equilibrium configurations. In this work, we use rotating magnets positioned in a line or at the vertices of a regular polygon. The rotation planes of the magnets can be modified at will. The rich structure of stable and unstable configurations is dictated by symmetry and the side of the polygon. We show that both symmetric solutions and their symmetry-breaking bifurcations can be explained with group theory. Our results suggest that the predicted magnetic textures should emerge at any length scale as long as the interaction is polar, and the system is endowed with the same symmetries.

1.
E.
Ising
, “
Beitrag zur theorie des ferromagnetismus
,”
Z. Phys. A: Hadrons Nucl.
31
,
253
258
(
1925
).
2.
L. P.
Kadanoff
,
Statistical Physics: Statics, Dynamics and Renormalization
(
World Scientific
,
2000
).
3.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality
,”
Phys. Rev. A
38
,
364
(
1988
).
4.
J.
Sethna
,
Statistical Mechanics: Entropy, Order Parameters, and Complexity
(
Oxford University Press
,
New York
,
2021
), Vol. 14.
5.
R.
Wang
,
C.
Nisoli
,
R.
Freitas
,
J.
Li
,
W.
McConville
,
B.
Cooley
,
M.
Lund
,
N.
Samarth
,
C.
Leighton
,
V.
Crespi
et al., “
Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands
,”
Nature
439
,
303
306
(
2006
).
6.
K.
Hofhuis
,
S. H.
Skjærvø
,
S.
Parchenko
,
H.
Arava
,
Z.
Luo
,
A.
Kleibert
,
P. M.
Derlet
, and
L. J.
Heyderman
, “
Real-space imaging of phase transitions in bridged artificial kagome spin ice
,”
Nat. Phys.
18
,
699
705
(
2022
).
7.
P.
Mellado
,
A.
Concha
, and
L.
Mahadevan
, “
Macroscopic magnetic frustration
,”
Phys. Rev. Lett.
109
,
257203
(
2012
).
8.
J.
Cisternas
,
P.
Mellado
,
F.
Urbina
,
C.
Portilla
,
M.
Carrasco
, and
A.
Concha
, “
Stable and unstable trajectories in a dipolar chain
,”
Phys. Rev. B
103
,
134443
(
2021
).
9.
J. P.
Sethna
,
K.
Dahmen
,
S.
Kartha
,
J. A.
Krumhansl
,
B. W.
Roberts
, and
J. D.
Shore
, “
Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations
,”
Phys. Rev. Lett.
70
,
3347
(
1993
).
10.
A.
Concha
,
D.
Aguayo
, and
P.
Mellado
, “
Designing hysteresis with dipolar chains
,”
Phys. Rev. Lett.
120
,
157202
(
2018
).
11.
D.
Jiles
and
D.
Atherton
, “
Theory of ferromagnetic hysteresis
,”
J. Magn. Magn. Mater.
61
,
48
60
(
1986
).
12.
R.
Hertel
,
W.
Wulfhekel
, and
J.
Kirschner
, “
Domain-wall induced phase shifts in spin waves
,”
Phys. Rev. Lett.
93
,
257202
(
2004
).
13.
R.
Hertel
and
C. M.
Schneider
, “
Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation
,”
Phys. Rev. Lett.
97
,
177202
(
2006
).
14.
C.
Nisoli
,
R.
Moessner
, and
P.
Schiffer
, “
Colloquium: Artificial spin ice: Designing and imaging magnetic frustration
,”
Rev. Mod. Phys.
85
,
1473
(
2013
).
15.
A. P.
Ramirez
,
A.
Hayashi
,
R. J.
Cava
,
R.
Siddharthan
, and
B.
Shastry
, “
Zero-point entropy in ‘spin ice’
,”
Nature
399
,
333
335
(
1999
).
16.
C.
Castelnovo
,
R.
Moessner
, and
S.
Sondhi
, “
Magnetic monopoles in spin ice
,”
Nature
451
,
42
45
(
2008
).
17.
E.
Mengotti
,
L. J.
Heyderman
,
A. F.
Rodríguez
,
F.
Nolting
,
R. V.
Hügli
, and
H.-B.
Braun
, “
Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice
,”
Nat. Phys.
7
,
68
74
(
2011
).
18.
S.
Cambré
,
J.
Campo
,
C.
Beirnaert
,
C.
Verlackt
,
P.
Cool
, and
W.
Wenseleers
, “
Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response
,”
Nat. Nanotechnol.
10
,
248
252
(
2015
).
19.
A.
Ortiz-Ambriz
,
C.
Nisoli
,
C.
Reichhardt
,
C. J.
Reichhardt
, and
P.
Tierno
, “
Colloquium: Ice rule and emergent frustration in particle ice and beyond
,”
Rev. Mod. Phys.
91
,
041003
(
2019
).
20.
R. C.
O’Handley
,
Modern Magnetic Materials: Principles and Applications
(
Wiley
,
New York
,
2000
).
21.
J.
Coey
,
Magnetism and Magnetic Materials
(
Cambridge University Press
,
Cambridge, UK
,
2010
).
22.
W.
Merz
, “
Double hysteresis loop of BaTiO3 at the Curie point
,”
Phys. Rev.
91
,
513
(
1953
).
23.
J.
Woodward
and
E.
DellaTorre
, “
Particle interaction in magnetic recording tapes
,”
J. Appl. Phys.
31
,
56
62
(
1960
).
24.
J.
Chung
,
A.
Vaziri
, and
L.
Mahadevan
, “
Reprogrammable Braille on an elastic shell
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
7509
7514
(
2018
).
25.
C.-L.
Chien
,
F. Q.
Zhu
, and
J.-G.
Zhu
, “
Patterned nanomagnets
,”
Phys. Today
60
(
6
),
40
(
2007
).
26.
G. S.
Kottas
,
L. I.
Clarke
,
D.
Horinek
, and
J.
Michl
, “
Artificial molecular rotors
,”
Chem. Rev.
105
,
1281
1376
(
2005
).
27.
G.-W.
Chern
,
P.
Mellado
, and
O.
Tchernyshyov
, “
Two-stage ordering of spins in dipolar spin ice on the kagome lattice
,”
Phys. Rev. Lett.
106
,
207202
(
2011
).
28.
P.
Mellado
,
A.
Concha
, and
S.
Rica
, “
Magnetoelectric effect in dipolar clusters
,”
Phys. Rev. Lett.
125
,
237602
(
2020
).
29.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
,
New York
,
1975
).
30.
G.
Pollack
and
D.
Stump
,
Electromagnetism
(
Addison-Wesley
,
San Francisco, CA
,
2002
).
31.
N.
Sepúlveda
,
F.
Guzmán-Lastra
,
M.
Carrasco
,
B.
González
,
E.
Hamm
, and
A.
Concha
, “Bioinspired magnetic active matter and the physical limits of magnetotaxis,” arXiv:2111.04889 (2021).
32.
I.
Ryzhkin
, “
Magnetic relaxation in rare-earth oxide pyrochlores
,”
J. Exp. Theor. Phys.
101
,
481
486
(
2005
).
33.
R. D.
McMichael
and
M. J.
Donahue
, “
Head to head domain wall structures in thin magnetic strips
,”
IEEE Trans. Magn.
33
,
4167
4169
(
1997
).
34.
O.
Tchernyshyov
and
G.-W.
Chern
, “
Fractional vortices and composite domain walls in flat nanomagnets
,”
Phys. Rev. Lett.
95
,
197204
(
2005
).
35.
H. A.
Teixeira
,
M. F.
Bernardo
,
M. D.
Saccone
,
F.
Caravelli
,
C.
Nisoli
, and
C. I. L.
de Araujo
, “Macroscopic magnetic monopoles in a 3D-printed mechano-magnet,” arXiv:2112.06058 (2021).
36.
D. R.
Stump
,
G. L.
Pollack
, and
J.
Borysowicz
, “
Magnets at the corners of polygons
,”
Am. J. Phys.
65
,
892
(
1997
).
37.
E. J.
Doedel
,
A. R.
Champneys
,
T. F.
Fairgrieve
,
Y. A.
Kuznetsov
,
B.
Sandstede
, and
X.
Wang
, “AUTO 97: Continuation and bifurcation software for ordinary differential equations (with HomCont),” (1997).
38.
M.
Golubitsky
,
I.
Stewart
, and
D. G.
Schaeffer
,
Singularities and Groups in Bifurcation Theory
(
Springer Science and Business Media
,
New York
,
2012
), Vol. 2.
39.
The isotropy lattice for Γ6=C22×C6 can be found in the website: https://people.maths.bris.ac.uk/∼matyd/GroupNames/1/C2^2xC6.html. Also available are the lattices for Γ8 and Γ10.
40.
B. J.
Olson
,
S. W.
Shaw
,
C.
Shi
,
C.
Pierre
, and
R. G.
Parker
, “
Circulant matrices and their application to vibration analysis
,”
Appl. Mech. Rev.
66
,
040803
(
2014
).
41.
O.
Burylko
,
A.
Mielke
,
M.
Wolfrum
, and
S.
Yanchuk
, “
Coexistence of Hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling
,”
SIAM J. Appl. Dyn. Syst.
17
,
2076
2105
(
2018
).
42.
K.
Dénes
,
B.
Sándor
, and
Z.
Néda
, “
Pattern selection in a ring of Kuramoto oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
78
,
104868
(
2019
).
43.
Theorem 9 and Corollary 17 in Ref. 40 give closed expressions for the eigenvalues and eigenvectors of circulant matrices.
44.
C.
Grebogi
,
E.
Kostelich
,
E.
Ott
, and
J. A.
Yorke
, “
Multi-dimensioned intertwined basin boundaries and the kicked double rotor
,”
Phys. Lett. A
118
,
448
452
(
1986
).
45.
H. E.
Nusse
and
J. A.
Yorke
, “
Basins of attraction
,”
Science
271
,
1376
1380
(
1996
).
46.
A.
Rakcheev
and
A. M.
Läuchli
, “Dynamics of a pair of magnetic dipoles with non-reciprocal interactions due to a moving conductor,” arXiv:2206.08765 (2022).
47.
Y.
Zhang
and
S. H.
Strogatz
, “
Basins with tentacles
,”
Phys. Rev. Lett.
127
,
194101
(
2021
).
48.
P.
Mellado
, “
Intrinsic topological magnons in arrays of magnetic dipoles
,”
Sci. Rep.
12
,
1420
(
2022
).
You do not currently have access to this content.