The Watts–Strogatz networks are important models that interpolate between regular lattices and random graphs, and Barabási–Albert networks are famous models that explain the origin of the scale-free networks. Here, we consider the first encounters between two particles (e.g., prey A and predator B) embedded in the Watts–Strogatz networks and the Barabási–Albert networks. We address numerically the mean first-encounter time (MFET) while the two particles are moving and the mean first-passage time (MFPT) while the prey is fixed, aiming at uncovering the impact of the prey’s motion on the encounter time, and the conditions where the motion of the prey would accelerate (or slow) the encounter between the two particles. Different initial conditions are considered. In the case where the two particles start independently from sites that are selected randomly from the stationary distribution, on the Barabási–Albert networks, the MFET is far less than the MFPT, and the impact of prey’s motion on the encounter time is enormous, whereas, on the Watts–Strogatz networks (including Erdős-Rényi random networks), the MFET is about 0.5–1 times the MFPT, and the impact of prey’s motion on the encounter time is relatively small. We also consider the case where prey A starts from a fixed site and the predator starts from a randomly drawn site and present the conditions where the motion of the prey would accelerate (or slow) the encounter between the two particles. The relation between the MFET (or MFPT) and the average path length is also discussed.

1.
G.
Oshanin
,
O.
Vasilyev
,
P. L.
Krapivsky
, and
J.
Klafter
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
13696
(
2009
).
2.
D. W.
Sims
,
E. J.
Southall
,
N. E.
Humphries
, and
G. C.
Hays
,
Nature
451
,
1098
(
2008
).
3.
F.
Le Vot
,
S. B.
Yuste
,
E.
Abad
, and
D. S.
Grebenkov
,
Phys. Rev. E
102
,
032118
(
2020
).
4.
G. M.
Viswanathan
,
S. V.
Buldyrev
,
S.
Havlin
,
M. G. E.
da Luz
,
E. P.
Raposo
, and
H. E.
Stanley
,
Nature
401
,
911
(
1999
).
5.
J.-F.
Rupprecht
,
O.
Bénichou
, and
R.
Voituriez
,
Phys. Rev. E
94
,
012117
(
2016
).
6.
M.
Feng
,
H.
Qu
, and
Z.
Yi
,
IEEE Trans. Circuits Syst. I Regul. Pap.
61
,
2941
(
2014
).
8.
G.
Schehr
,
S. N.
Majumdar
,
A.
Comtet
, and
P. J.
Forrester
,
J. Stat. Phys.
150
,
491
(
2013
).
9.
K. W.
Wen
,
L. F.
Huang
,
Q.
Wang
, and
J. S.
Yu
,
Int. J. Biomath.
12
,
97
(
2019
).
10.
F.
Jiao
,
J.
Ren
, and
J.
Yu
,
Discrete Contin. Dyn. Syst. B
25
,
241
(
2020
).
This issue
11.
F.
Le Vot
,
C.
Escudero
,
E.
Abad
, and
S. B.
Yuste
,
Phys. Rev. E
98
,
032137
(
2018
).
12.
A.
Szabo
,
R.
Zwanzig
, and
N.
Agmon
,
Phys. Rev. Lett.
61
,
2496
(
1988
).
13.
S. B.
Yuste
,
G.
Oshanin
,
K.
Lindenberg
,
O.
Bénichou
, and
J.
Klafter
,
Phys. Rev. E
78
,
021105
(
2008
).
14.
R.
Campari
and
D.
Cassi
,
Phys. Rev. E
86
,
021110
(
2012
).
15.
M.
George
,
R.
Patel
, and
F.
Bullo
, arxiv:abs/1806.08843v1 (2018).
16.
A. P.
Riascos
and
D. P.
Sanders
,
Phys. Rev. E
103
,
042312
(
2021
).
17.
S.
Redner
,
A Guide to First-Passage Processes
(
Cambridge University Press
,
2007
).
18.
Y. B.
Sheng
and
Z. Z.
Zhang
,
IEEE Trans. Inf. Theory
65
,
6898
(
2019
).
19.
J. H.
Peng
,
T. J.
Chen
, and
G. A.
Xu
,
IEEE Trans. Network Sci. Eng.
9
,
1308
(
2022
).
20.
Z. Z.
Zhang
,
B.
Wu
,
H. J.
Zhang
,
S. G.
Zhou
, and
Z. G.
Wang
,
Phys. Rev. E
81
,
031118
(
2010
).
21.
J. H.
Peng
and
E.
Agliari
,
Phys. Rev. E
100
,
062310
(
2019
).
22.
M.
Moreau
,
G.
Oshanin
,
O.
Bénichou
, and
M.
Coppey
,
Phys. Rev. E
67
,
045104(R)
(
2003
).
23.
L.-C.
Chen
and
R. F.
Sun
,
J. Theor. Probab.
27
,
997
(
2014
).
24.
V.
Tejedor
,
M.
Schad
,
O.
Bénichou
,
R.
Voituriez
, and
R.
Metzler
,
J. Phys. A
44
,
395005
(
2011
).
25.
D.
Holcman
and
I.
Kupka
,
J. Phys. A
42
,
1943
(
2009
).
26.
E.
Agliari
,
A.
Blumen
, and
D.
Cassi
,
Phys. Rev. E
89
,
052147
(
2014
).
27.
E.
Agliari
,
D.
Cassi
,
L.
Cattivelli
, and
F.
Sartori
,
Phys. Rev. E
93
,
052111
(
2016
).
28.
J. H.
Peng
,
T.
Sandev
, and
L.
Kocarev
,
Commun. Nonlinear Sci. Numer. Simul.
95
,
105594
(
2021
).
29.
L. A. N.
Amaral
,
A.
Scala
,
M.
Barthelemy
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
11149
(
2000
).
30.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
,
Nature
401
,
130
(
1999
).
31.
D. J.
Watts
and
S. H.
Strogatz
,
Nature
393
,
440
(
1998
).
32.
R.
Albert
and
A.-L.
Barabási
,
Rev. Mod. Phys.
74
,
47
(
2002
).
33.
S. N.
Dorogovtsev
,
A. V.
Goltsev
, and
J. F. F.
Mendes
,
Rev. Mod. Phys.
80
,
1275
(
2008
).
34.
R.
Cohen
and
S.
Havlin
,
Phys. Rev. Lett.
90
,
058701
(
2003
).
35.
A.-L.
Barabási
and
R.
Albert
,
Science
286
,
509
(
1999
).
36.
K.
Ziemelis
,
Nature
410
,
241
(
2001
).
37.
G. G.
Dong
,
F.
Wang
,
L. M.
Shekhtman
,
M. M.
Danziger
,
J. F.
Fan
,
R. J.
Du
,
J. G.
Liu
,
L. X.
Tian
,
H. E.
Stanley
, and
S.
Havlin
,
Proc. Natl. Acad. Sci. U.S.A.
118
(22),
e1922831118
(
2021
).
38.
Y. Y.
Liu
,
H.
Sanhedrai
,
G. G.
Dong
,
L. M.
Shekhtman
,
F.
Wang
,
S. V.
Buldyrev
, and
S.
Havlin
,
Natl. Sci. Rev.
8
,
nwaa229
(
2020
).
39.
D.
Aldous
and
J. A.
Fill
, “see http://www.stat.berkeley.edu/ãldous/RWG/book.html for “Reversible Markov chains and random walks on graphs,” unfinished monograph, recompiled 2014 (2002).
40.
L.
Gao
,
J. H.
Peng
, and
C. M.
Tang
,
Phys. Rev. E
105
,
044201
(
2022
).
41.
J. H.
Peng
,
G. A.
Xu
,
R. X.
Shao
,
C.
Lin
, and
H. E.
Stanley
,
J. Chem. Phys.
149
,
024903
(
2018
).
42.
A.-L.
Barabási
,
Network Science
(
Cambridge University Press
,
New York
,
2016
).
43.
A.-L.
Barabási
,
R.
Albert
, and
H.
Jeong
,
Physica A
272
,
173
(
1999
).
44.
B.
Bollobás
and
O.
Riordan
,
Combinatorica
24
,
5
(
2004
).
45.
S.
Hwang
,
D.-S.
Lee
, and
B.
Kahng
,
Phys. Rev. Lett.
109
,
088701
(
2012
).
46.
N.
Masuda
,
M. A.
Porter
, and
R.
Lambiotte
,
Phys. Rep.
716–717
,
1
(
2017
).
47.
M. E. J.
Newman
,
C.
Moore
, and
D. J.
Watts
,
Phys. Rev. Lett.
84
,
3201
(
2000
).
48.
L.
Lovász
, in Combinatorics, Paul Erdös is Eighty, edited by D. Miklós, V. T. Sós, and T. Szönyi (János Bolyai Mathematical Society, Budapest, 1996), Vol. 2, pp. 353–398.
49.
P.
Tetali
,
J. Theor. Probab.
4
,
101
(
1991
).
You do not currently have access to this content.