The role of topological heterogeneity in the origin of extreme events in a network is investigated here. The dynamics of the oscillators associated with the nodes are assumed to be identical and influenced by mean-field repulsive interactions. An interplay of topological heterogeneity and the repulsive interaction between the dynamical units of the network triggers extreme events in the nodes when each node succumbs to such events for discretely different ranges of repulsive coupling. A high degree node is vulnerable to weaker repulsive interactions, while a low degree node is susceptible to stronger interactions. As a result, the formation of extreme events changes position with increasing strength of repulsive interaction from high to low degree nodes. Extreme events at any node are identified with the appearance of occasional large-amplitude events (amplitude of the temporal dynamics) that are larger than a threshold height and rare in occurrence, which we confirm by estimating the probability distribution of all events. Extreme events appear at any oscillator near the boundary of transition from rotation to libration at a critical value of the repulsive coupling strength. To explore the phenomenon, a paradigmatic second-order phase model is used to represent the dynamics of the oscillator associated with each node. We make an annealed network approximation to reduce our original model and, thereby, confirm the dual role of the repulsive interaction and the degree of a node in the origin of extreme events in any oscillator associated with a node.

1.
M.
Ghil
,
P.
Yiou
,
S.
Hallegatte
,
B.
Malamud
,
P.
Naveau
,
A.
Soloviev
,
P.
Friederichs
,
V.
Keilis-Borok
,
D.
Kondrashov
,
V.
Kossobokov
et al.,
Nonlinear Processes Geophys.
18
,
295
350
(
2011
).
2.
T. P.
Sapsis
,
Philos. Trans. R. Soc. A
376
,
20170133
(
2018
).
3.
M.
Farazmand
and
T. P.
Sapsis
,
Appl. Mech. Rev.
71
,
050801
(
2019
).
4.
A.
Mishra
,
S.
Leo Kingston
,
C.
Hens
,
T.
Kapitaniak
,
U.
Feudel
, and
S. K.
Dana
,
Chaos
30
,
063114
(
2020
).
5.
S.
Nag Chowdhury
,
A.
Ray
,
S. K.
Dana
, and
D.
Ghosh
,
Phys. Rep.
966
,
1
52
(
2022
).
6.
C.
Folke
,
S.
Carpenter
,
B.
Walker
,
M.
Scheffer
,
T.
Elmqvist
,
L.
Gunderson
, and
C. S.
Holling
,
Annu. Rev. Ecol. Evol. Syst.
35
,
557
581
(
2004
).
7.
M.
Scheffer
and
S. R.
Carpenter
,
Trends Ecol. Evol.
18
,
648
656
(
2003
).
8.
D. M.
Anderson
,
A. D.
Cembella
, and
G. M.
Hallegraeff
,
Annu. Rev. Mar. Sci.
4
,
143
176
(
2012
).
9.
M.
Jusup
,
P.
Holme
,
K.
Kanazawa
,
M.
Takayasu
,
I.
Romić
,
Z.
Wang
,
S.
Geček
,
T.
Lipić
,
B.
Podobnik
,
L.
Wang
et al.,
Phys. Rep.
948
,
1
148
(
2022
).
10.
D.
Helbing
,
D.
Brockmann
,
T.
Chadefaux
,
K.
Donnay
,
U.
Blanke
,
O.
Woolley-Meza
,
M.
Moussaid
,
A.
Johansson
,
J.
Krause
,
S.
Schutte
et al.,
J. Stat. Phys.
158
,
735
781
(
2015
).
11.
C.
Kharif
and
E.
Pelinovsky
,
Eur. J. Mech. B Fluids
22
,
603
634
(
2003
).
12.
N.
Akhmediev
,
J. M.
Soto-Crespo
, and
A.
Ankiewicz
,
Phys. Lett. A
373
,
2137
2145
(
2009
).
13.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
,
Nature
450
,
1054
1057
(
2007
).
14.
C.
Bonatto
,
M.
Feyereisen
,
S.
Barland
,
M.
Giudici
,
C.
Masoller
,
J. R. R.
Leite
, and
J. R.
Tredicce
,
Phys. Rev. Lett.
107
,
053901
(
2011
).
15.
J.
Zamora-Munt
,
B.
Garbin
,
S.
Barland
,
M.
Giudici
,
J. R. R.
Leite
,
C.
Masoller
, and
J. R.
Tredicce
,
Phys. Rev. A
87
,
035802
(
2013
).
16.
É.
Mercier
,
A.
Even
,
E.
Mirisola
,
D.
Wolfersberger
, and
M.
Sciamanna
,
Phys. Rev. E
91
,
042914
(
2015
).
17.
A.
Ray
,
S.
Rakshit
,
D.
Ghosh
, and
S. K.
Dana
,
Chaos
29
,
043131
(
2019
).
18.
H. L. D. S.
Cavalcante
,
M.
Oriá
,
D.
Sornette
,
E.
Ott
, and
D. J.
Gauthier
,
Phys. Rev. Lett.
111
,
198701
(
2013
).
19.
G. F.
de Oliveira
, Jr.
,
O.
Di Lorenzo
,
T. P.
de Silans
,
M.
Chevrollier
,
M.
Oriá
, and
H. L.
de Souza Cavalcante
,
Phys. Rev. E
93
,
062209
(
2016
).
20.
S. L.
Kingston
,
K.
Thamilmaran
,
P.
Pal
,
U.
Feudel
, and
S. K.
Dana
,
Phys. Rev. E
96
,
052204
(
2017
).
21.
A.
Ray
,
S.
Rakshit
,
G. K.
Basak
,
S. K.
Dana
, and
D.
Ghosh
,
Phys. Rev. E
101
,
062210
(
2020
).
22.
S.
Sudharsan
,
A.
Venkatesan
,
P.
Muruganandam
, and
M.
Senthilvelan
,
Eur. Phys. J. Plus
136
,
1
19
(
2021
).
23.
J.
Meiyazhagan
,
S.
Sudharsan
, and
M.
Senthilvelan
,
Eur. Phys. J. B
94
,
1
13
(
2021
).
24.
A.
Mishra
,
S.
Saha
,
M.
Vigneshwaran
,
P.
Pal
,
T.
Kapitaniak
, and
S. K.
Dana
,
Phys. Rev. E
97
,
062311
(
2018
).
25.
A.
Saha
and
U.
Feudel
,
Phys. Rev. E
95
,
062219
(
2017
).
26.
S.
Kumarasamy
and
A. N.
Pisarchik
,
Phys. Rev. E
98
,
032203
(
2018
).
27.
S.
Kumarasamy
,
S.
Srinivasan
,
P. B.
Gogoi
, and
A.
Prasad
,
Commun. Nonlinear Sci. Numer. Simul.
107
,
106170
(
2022
).
28.
H.
Babaee
and
T.
Sapsis
,
Philos. Trans. R. Soc. London
472
,
20150779
(
2016
).
29.
C.
Bonatto
and
A.
Endler
,
Phys. Rev. E
96
,
012216
(
2017
).
30.
B.
Thangavel
,
S.
Srinivasan
, and
T.
Kathamuthu
,
Chaos Solitons Fractals
153
,
111569
(
2021
).
31.
B.
Kaviya
,
R.
Suresh
,
V.
Chandrasekar
, and
B.
Balachandran
,
Int. J. Non-Linear Mech.
127
,
103596
(
2020
).
32.
S. L.
Kingston
,
A.
Mishra
,
M.
Balcerzak
,
T.
Kapitaniak
, and
S. K.
Dana
,
Phys. Rev. E
104
,
034215
(
2021
).
33.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
,
R.
Sevilla-Escoboza
,
G.
Huerta-Cuellar
, and
M.
Taki
,
Phys. Rev. Lett.
107
,
274101
(
2011
).
34.
R.
Suresh
and
V.
Chandrasekar
,
Chaos
30
,
083141
(
2020
).
35.
E.
Mompó
,
M.
Carretero
, and
L.
Bonilla
,
Phys. Rev. Lett.
127
,
096601
(
2021
).
36.
S. L.
Kingston
,
M.
Balcerzak
,
T.
Kapitaniak
, and
S. K.
Dana
, “Transition to hyperchaos and rare large-intensity pulses in Zeeman laser,” arXiv:2201.09567 (2022).
37.
S.
Leo Kingston
,
T.
Kapitaniak
, and
S. K.
Dana
,
Chaos
32
,
081106
(
2022
).
38.
S. N.
Chowdhury
,
A.
Ray
,
A.
Mishra
, and
D.
Ghosh
,
J. Phys.: Complexity
2
,
035021
(
2021
).
39.
P.
Moitra
and
S.
Sinha
,
Chaos
29
,
023131
(
2019
).
40.
S.
Nag Chowdhury
,
S.
Majhi
,
M.
Ozer
,
D.
Ghosh
, and
M.
Perc
,
New J. Phys.
21
,
073048
(
2019
).
41.
S.
Nag Chowdhury
,
S.
Majhi
, and
D.
Ghosh
,
IEEE Trans. Network Sci. Eng.
7
,
3159
3170
(
2020
).
42.
J.
Heagy
,
N.
Platt
, and
S.
Hammel
,
Phys. Rev. E
49
,
1140
(
1994
).
43.
Y.
Tang
,
J.
Kurths
,
W.
Lin
,
E.
Ott
, and
L.
Kocarev
,
Chaos
30
,
063151
(
2020
).
44.
A.
Ray
,
T.
Chakraborty
, and
D.
Ghosh
,
Chaos
31
,
111105
(
2021
).
45.
J.
Meiyazhagan
,
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
,
Eur. Phys. J. Plus
137
,
1
20
(
2022
).
46.
A.
Banerjee
,
A.
Mishra
,
S. K.
Dana
,
C.
Hens
,
T.
Kapitaniak
,
J.
Kurths
, and
N.
Marwan
,
Front. Appl. Math. Stat.
8
,
99
(
2022
).
47.
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
,
Eur. Phys. J. Plus
136
,
817
(
2021
).
48.
G.
Ansmann
,
R.
Karnatak
,
K.
Lehnertz
, and
U.
Feudel
,
Phys. Rev. E
88
,
052911
(
2013
).
49.
T.
Bröhl
and
K.
Lehnertz
,
Chaos
30
,
073113
(
2020
).
50.
S.
Werner
and
K.
Lehnertz
,
Chaos
25
,
073101
(
2015
).
51.
T.
Rings
,
G.
Ansmann
, and
K.
Lehnertz
,
Eur. Phys. J. Spec. Top.
226
,
1963
1970
(
2017
).
52.
G.
Ansmann
,
K.
Lehnertz
, and
U.
Feudel
,
Phys. Rev. X
6
,
011030
(
2016
).
53.
V.
Varshney
,
S.
Kumarasamy
,
A.
Mishra
,
B.
Biswal
, and
A.
Prasad
,
Chaos
31
,
093136
(
2021
).
54.
S. S.
Chaurasia
,
U. K.
Verma
, and
S.
Sinha
,
Sci. Rep.
10
,
1
10
(
2020
).
55.
T.
Bröhl
and
K.
Lehnertz
,
Chaos
29
,
033115
(
2019
).
56.
Z.
Levnajić
,
Phys. Rev. E
84
,
016231
(
2011
).
57.
C.
Hens
,
O. I.
Olusola
,
P.
Pal
, and
S. K.
Dana
,
Phys. Rev. E
88
,
034902
(
2013
).
58.
A.
Ray
,
A.
Mishra
,
D.
Ghosh
,
T.
Kapitaniak
,
S. K.
Dana
, and
C.
Hens
,
Phys. Rev. E
101
,
032209
(
2020
).
59.
C.
Xu
,
X.
Tang
,
H.
,
K.
Alfaro-Bittner
,
S.
Boccaletti
,
M.
Perc
, and
S.
Guan
,
Phys. Rev. Res.
3
,
043004
(
2021
).
60.
R.
Cohen
,
K.
Erez
,
D.
Ben-Avraham
, and
S.
Havlin
,
Phys. Rev. Lett.
86
,
3682
(
2001
).
61.
R.
Albert
,
H.
Jeong
, and
A. L.
Barabási
,
Nature
406
,
378
382
(
2000
).
62.
A.
Mishra
,
S.
Ghosh
,
S.
Kumar Dana
,
T.
Kapitaniak
, and
C.
Hens
,
Chaos
31
,
052101
(
2021
).
63.
S. K.
Dana
,
D. C.
Sengupta
, and
C. K.
Hu
,
IEEE Trans. Circuits Syst. II: Express Briefs
53
,
1031
1034
(
2006
).
64.
S. K.
Dana
,
D. C.
Sengupta
, and
K. D.
Edoh
,
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
48
,
990
996
(
2001
).
65.
T.
Hongray
and
J.
Balakrishnan
,
Chaos
26
,
123107
(
2016
).
66.
J.
Rubinstein
,
J. Math. Phys.
11
,
258
266
(
1970
).
67.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2018
).
68.
A.
Mishra
,
S.
Saha
,
C.
Hens
,
P. K.
Roy
,
M.
Bose
,
P.
Louodop
,
H. A.
Cerdeira
, and
S. K.
Dana
,
Phys. Rev. E
95
,
010201
(
2017
).
69.
C.
Hens
,
P.
Pal
, and
S. K.
Dana
,
Phys. Rev. E
92
,
022915
(
2015
).
70.
A. L.
Barabási
and
R.
Albert
,
Science
286
,
509
512
(
1999
).
71.
L. E.
McPhillips
,
H.
Chang
,
M. V.
Chester
,
Y.
Depietri
,
E.
Friedman
,
N. B.
Grimm
,
J. S.
Kominoski
,
T.
McPhearson
,
P.
Méndez-Lázaro
,
E. J.
Rosi
et al.,
Earth’s Future
6
,
441
455
(
2018
).
72.
C.
Kharif
,
E.
Pelinovsky
, and
A.
Slunyaev
,
Rogue Waves in the Ocean
, 1st ed. (
Springer-Verlag
,
Berlin
,
2008
).
73.
K.
Dysthe
,
H. E.
Krogstad
, and
P.
Müller
,
Annu. Rev. Fluid Mech.
40
,
287
310
(
2008
).
74.
J. A.
Reinoso
,
J.
Zamora-Munt
, and
C.
Masoller
,
Phys. Rev. E
87
,
062913
(
2013
).
75.
S. N.
Dorogovtsev
,
A. V.
Goltsev
, and
J. F.
Mendes
,
Rev. Mod. Phys.
80
,
1275
(
2008
).
76.
B.
Coutinho
,
A.
Goltsev
,
S.
Dorogovtsev
, and
J.
Mendes
,
Phys. Rev. E
87
,
032106
(
2013
).
77.
I. Z.
Kiss
,
J. C.
Miller
,
P. L.
Simon
et al.,
Mathematics of Epidemics on Networks
(
Springer
,
Cham
,
2017
), Vol. 598, p. 31.
78.
P.
Kundu
,
P.
Khanra
,
C.
Hens
, and
P.
Pal
,
Phys. Rev. E
96
,
052216
(
2017
).
79.
S.
Ghosh
,
P.
Khanra
,
P.
Kundu
,
P.
Ji
,
D.
Ghosh
, and
C.
Hens
, “Dimension reduction in higher order contagious phenomena,” personal communication (24/10/2022).
80.
M.
Santhanam
and
H.
Kantz
,
Phys. Rev. E
78
,
051113
(
2008
).
81.
Z.
Dezső
and
A. L.
Barabási
,
Phys. Rev. E
65
,
055103
(
2002
).
You do not currently have access to this content.