Nonlinear complex network-coupled systems typically have multiple stable equilibrium states. Following perturbations or due to ambient noise, the system is pushed away from its initial equilibrium, and, depending on the direction and the amplitude of the excursion, it might undergo a transition to another equilibrium. It was recently demonstrated [M. Tyloo, J. Phys. Complex. 3 03LT01 (2022)] that layered complex networks may exhibit amplified fluctuations. Here, I investigate how noise with system-specific correlations impacts the first escape time of nonlinearly coupled oscillators. Interestingly, I show that, not only the strong amplification of the fluctuations is a threat to the good functioning of the network but also the spatial and temporal correlations of the noise along the lowest-lying eigenmodes of the Laplacian matrix. I analyze first escape times on synthetic networks and compare noise originating from layered dynamics to uncorrelated noise.

1.
M.
Tyloo
, “
Layered complex networks as fluctuation amplifiers
,”
J. Phys. Complex
3
,
03LT01
(
2022
).
2.
M.
Pedersen
,
A.
Zalesky
,
A.
Omidvarnia
, and
G. D.
Jackson
, “
Multilayer network switching rate predicts brain performance
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
13376
13381
(
2018
).
3.
J.
Machowski
,
J. W.
Bialek
, and
J. R.
Bumby
,
Power System Dynamics
, 2nd ed. (
Wiley
,
Chichester
,
2008
).
4.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
5.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
, “
The size of the sync basin
,”
Chaos
16
,
015103
(
2006
).
6.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
, “
How basin stability complements the linear-stability paradigm
,”
Nat. Phys.
9
,
89
(
2013
).
7.
I.
Simonsen
,
L.
Buzna
,
K.
Peters
,
S.
Bornholdt
, and
D.
Helbing
, “
Transient dynamics increasing network vulnerability to cascading failures
,”
Phys. Rev. Lett.
100
,
218701
(
2008
).
8.
L.
DeVille
, “
Transitions amongst synchronous solutions in the stochastic Kuramoto model
,”
Nonlinearity
25
,
1473
1494
(
2012
).
9.
B.
Schäfer
,
M.
Matthiae
,
X.
Zhang
,
M.
Rohden
,
M.
Timme
, and
D.
Witthaut
, “
Escape routes, weak links, and desynchronization in fluctuation-driven networks
,”
Phys. Rev. E
95
,
060203(R)
(
2017
).
10.
J.
Hindes
and
I. B.
Schwartz
, “
Rare slips in fluctuating synchronized oscillator networks
,”
Chaos
28
,
071106
(
2018
).
11.
M.
Tyloo
,
R.
Delabays
, and
P.
Jacquod
, “
Noise-induced desynchronization and stochastic escape from equilibrium in complex networks
,”
Phys. Rev. E
99
,
062213
(
2019
).
12.
M.
Kurant
and
P.
Thiran
, “
Layered complex networks
,”
Phys. Rev. Lett.
96
,
138701
(
2006
).
13.
G.
Bianconi
,
Multilayer Networks: Structure and Function
(
Oxford University Press
,
2018
).
14.
T.
Njougouo
,
V.
Camargo
,
P.
Louodop
,
F.
Fagundes Ferreira
,
P. K.
Talla
, and
H. A.
Cerdeira
, “
Dynamics of multilayer networks with amplification
,”
Chaos
30
,
123136
(
2020
).
15.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, Berlin, 1975).
16.
R.
Delabays
,
M.
Tyloo
, and
P.
Jacquod
, “
The size of the sync basin revisited
,”
Chaos
27
,
103109
(
2017
).
17.
Y.
Zhang
and
S. H.
Strogatz
, “
Basins with tentacles
,”
Phys. Rev. Lett.
127
,
194101
(
2021
).
18.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of “small-world” networks
,”
Nature
393
,
440
442
(
1998
).
You do not currently have access to this content.