This study investigates the use of covariant Lyapunov vectors and their respective angles for detecting transitions between metastable states in dynamical systems, as recently discussed in several atmospheric sciences applications. In a first step, the needed underlying dynamical models are derived from data using a non-parametric model-based clustering framework. The covariant Lyapunov vectors are then approximated based on these data-driven models. The data-based numerical approach is tested using three well-understood example systems with increasing dynamical complexity, identifying properties that allow for a successful application of the method: in particular, the method is identified to require a clear multiple time scale structure with fast transitions between slow subsystems. The latter slow dynamics should be dynamically characterized by invariant neutral directions of the linear approximation model.

1.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
1997
), Vol. 54.
2.
P.
Manneville
,
Instabilities, Chaos and Turbulence
(
World Scientific
,
2010
), Vol. 1.
3.
D.
Ruelle
, “
Sensitive dependence on initial condition and turbulent behavior of dynamical systems
,”
Ann. N.Y. Acad. Sci.
316
,
408
416
(
1979
).
4.
F.
Ginelli
,
P.
Poggi
,
A.
Turchi
,
H.
Chaté
,
R.
Livi
, and
A.
Politi
, “
Characterizing dynamics with covariant Lyapunov vectors
,”
Phys. Rev. Lett.
99
,
130601
(
2007
).
5.
C. L.
Wolfe
and
R. M.
Samelson
, “
An efficient method for recovering Lyapunov vectors from singular vectors
,”
Tellus A: Dyn. Meteorol. Oceanogr.
59
,
355
366
(
2007
).
6.
S.
Gilmore
, “
Lyapunov exponents and temperature transitions in a warming Australia
,”
J. Clim.
32
,
2969
2989
(
2019
).
7.
F.
Nazarimehr
,
S.
Jafari
,
S. M. R. H.
Golpayegani
, and
J.
Sprott
, “
Can Lyapunov exponent predict critical transitions in biological systems?
,”
Nonlinear Dyn.
88
,
1493
1500
(
2017
).
8.
Z.
Toth
and
E.
Kalnay
, “
Ensemble forecasting at NMC: The generation of perturbations
,”
Bull. Am. Meteorol. Soc.
74
,
2317
2330
(
1993
).
9.
N.
Sharafi
,
M.
Timme
, and
S.
Hallerberg
, “
Critical transitions and perturbation growth directions
,”
Phys. Rev. E
96
,
032220
(
2017
).
10.
M. W.
Beims
and
J. A.
Gallas
, “
Alignment of Lyapunov vectors: A quantitative criterion to predict catastrophes?
,”
Sci. Rep.
6
,
1
7
(
2016
).
11.
E. L.
Brugnago
,
J. A. C.
Gallas
, and
M. W.
Beims
, “
Predicting regime changes and durations in Lorenz’s atmospheric convection model
,”
Chaos
30
,
103109
(
2020
).
12.
C.
Quinn
,
T. J.
O’Kane
, and
V.
Kitsios
, “
Application of a local attractor dimension to reduced space strongly coupled data assimilation for chaotic multiscale systems
,”
Nonlinear Process. Geophys.
27
,
51
74
(
2020
).
13.
C.
Quinn
,
D.
Harries
, and
T. J. O.
Kane
, “
Dynamical analysis of a reduced model for the North Atlantic Oscillation
,”
J. Atmos. Sci.
78
,
1647
1671
(
2021
).
14.
G.
Froyland
,
T.
Hüls
,
G. P.
Morriss
, and
T. M.
Watson
, “
Computing covariant Lyapunov vectors, Oseledets vectors, and dichotomy projectors: A comparative numerical study
,”
Physica D
247
,
18
39
(
2013
).
15.
C.
Martin
,
N.
Sharafi
, and
S.
Hallerberg
, “
Estimating covariant Lyapunov vectors from data
,”
Chaos
32
,
033105
(
2022
).
16.
I.
Horenko
, “
Finite element approach to clustering of multidimensional time series
,”
SIAM J. Sci. Comput.
32
,
62
83
(
2010
).
17.
I.
Horenko
, “
On the identification of nonstationary factor models and their application to atmospheric data analysis
,”
J. Atmos. Sci.
67
,
1559
1574
(
2010
).
18.
P.
Metzner
,
L.
Putzig
, and
I.
Horenko
, “
Analysis of persistent nonstationary time series and applications
,”
Commun. Appl. Math. Comput. Sci.
7
,
175
229
(
2012
).
19.
V. I.
Oseledec
, “
A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems
,”
Trudy Moskov Mat. Obšč.
19
,
179
210
(
1968
).
20.
B.
Deremble
,
F.
D’Andrea
, and
M.
Ghil
, “
Fixed points, stable manifolds, weather regimes, and their predictability
,”
Chaos
19
,
043109
(
2009
).
21.
N.
Balci
,
A.
Mazzucato
,
J. M.
Restrepo
, and
G.
Sell
, “
Ensemble dynamics and bred vectors
,”
Mon. Weather Rev.
140
,
2308
2334
(
2012
).
22.
J. A.
Hartigan
and
M. A.
Wong
, “
Algorithm AS 136: A K-means clustering algorithm
,”
J. R. Stat. Soc. C
28
,
100
108
(
1979
).
23.
L.
Rabiner
, “
A tutorial on hidden Markov-models and selected applications in speech recognition
,”
Proc. IEEE
77
,
257
286
(
1989
).
24.
N.
Vercauteren
and
R.
Klein
, “
A clustering method to characterize intermittent bursts of turbulence and interaction with submesomotions in the stable boundary layer
,”
J. Atmos. Sci.
72
,
1504
1517
(
2015
).
25.
V.
Boyko
and
N.
Vercauteren
, “
Multiscale shear forcing of turbulence in the nocturnal boundary layer: A statistical analysis
,”
Boundary Layer Meteorol.
179
,
43
72
(
2021
).
26.
T. J.
O’Kane
,
J. S.
Risbey
,
C.
Franzke
,
I.
Horenko
, and
D. P.
Monselesan
, “
Changes in the metastability of the midlatitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split-flow blocking indices as diagnostic tools
,”
J. Atmos. Sci.
70
,
824
842
(
2013
).
27.
T. J.
O’Kane
,
R. J.
Matear
,
M. A.
Chamberlain
,
J. S.
Risbey
,
B. M.
Sloyan
, and
I.
Horenko
, “
Decadal variability in an OGCM Southern Ocean: Intrinsic modes, forced modes and metastable states
,”
Ocean Modell.
69
,
1
21
(
2013
).
28.
C.
Rödenbeck
,
C.
Beck
, and
H.
Kantz
, “Dynamical systems with time scale separation: Averaging, stochastic modelling, and central limit theorems,” in Stochastic Climate Models (Birkhäuser, Basel, 2001), pp. 189–209.
29.
J.
Wouters
and
V.
Lucarini
, “
Multi-level dynamical systems: Connecting the Ruelle response theory and the Mori-Zwanzig approach
,”
J. Stat. Phys.
151
,
850
860
(
2013
).
30.
S.
Shoffner
and
S.
Schnell
, “
Approaches for the estimation of timescales in nonlinear dynamical systems: Timescale separation in enzyme kinetics as a case study
,”
Math. Biosci.
287
,
122
129
(
2017
).
31.
T.
Alberti
,
D.
Faranda
,
R. V.
Donner
,
T.
Caby
,
V.
Carbone
,
G.
Consolini
,
B.
Dubrulle
, and
S.
Vaienti
, “
Small-scale induced large-scale transitions in solar wind magnetic field
,”
Astrophys. J. Lett.
914
,
L6
(
2021
).
32.
R.
FitzHugh
, “
Mathematical models of threshold phenomena in the nerve membrane
,”
Bull. Math. Biophys.
17
,
257
278
(
1955
).
33.
N.
Fenichel
, “
Geometric singular perturbation theory for ordinary differential equations
,”
J. Differ. Equ.
31
,
53
98
(
1979
).
34.
C.
Kuehn
, Multiple Time Scale Dynamics, Applied Mathematical Sciences Vol. 191 (Springer, Cham, 2015), pp. xiv+814.
35.
P.-P.
Cortet
,
A.
Chiffaudel
,
F.
Daviaud
, and
B.
Dubrulle
, “
Experimental evidence of a phase transition in a closed turbulent flow
,”
Phys. Rev. Lett.
105
,
214501
(
2010
).
36.
B.
Saint-Michel
,
F.
Daviaud
, and
B.
Dubrulle
, “
A zero-mode mechanism for spontaneous symmetry breaking in a turbulent von Kármán flow
,”
New J. Phys.
16
,
013055
(
2014
).
37.
D.
Faranda
,
Y.
Sato
,
B.
Saint-Michel
,
C.
Wiertel
,
V.
Padilla
,
B.
Dubrulle
, and
F.
Daviaud
, “
Stochastic chaos in a turbulent swirling flow
,”
Phys. Rev. Lett.
119
,
014502
(
2017
).
38.
B.
Dubrulle
,
F.
Daviaud
,
D.
Faranda
,
L.
Marié
, and
B.
Saint-Michel
, “
How many modes are needed to predict climate bifurcations? Lessons from an experiment
,”
Nonlinear Process. Geophys.
29
,
17
35
(
2022
), https://doi.org/10.5194/npg-29-17-2022.
39.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
40.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
41.
J.
de Wiljes
,
A. J.
Majda
, and
I.
Horenko
, “
An adaptive Markov chain Monte Carlo approach to time series clustering of processes with regime transition behavior
,”
Multiscale Model. Simul.
11
,
415
441
(
2013
).
42.
V.
Boyko
,
S.
Krumscheid
, and
N.
Vercauteren
, “Statistical learning of non-linear stochastic differential equations from non-stationary time-series using variational clustering,”
Multiscale Model. Simul.
2022
,
1251
1283
.
You do not currently have access to this content.