We employ a recently developed single-trajectory Lagrangian diagnostic tool, the trajectory rotation average , to visualize oceanic vortices (or eddies) from sparse drifter data. We apply the to two drifter data sets that cover various oceanographic scales: the Grand Lagrangian Deployment and the Global Drifter Program. Based on the , we develop a general algorithm that extracts approximate eddy boundaries. We find that the outperforms other available single-trajectory-based eddy detection methodologies on sparse drifter data and identifies eddies on scales that are unresolved by satellite-altimetry.
REFERENCES
1.
R.
Abernathey
, C.
Bladwell
, G.
Froyland
, and K.
Sakellariou
, “Deep Lagrangian connectivity in the global ocean inferred from Argo floats
,” J. Phys. Oceanogr.
52
, 951
–963
(2021
).2.
F. J.
Beron-Vera
, M. J.
Olascoaga
, G.
Haller
, M.
Farazmand
, J.
Triñanes
, and Y.
Wang
, “Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
,” Chaos
25
, 087412
(2015
). 3.
G.
Froyland
, R. M.
Stuart
, and E.
van Sebille
, “How well-connected is the surface of the global ocean?
,” Chaos
24
, 033126
(2014
). 4.
P.
Miron
, M. J.
Olascoaga
, F. J.
Beron-Vera
, N. F.
Putman
, J.
Triñanes
, R.
Lumpkin
, and G. J.
Goni
, “Clustering of marine debris and sargassum like drifters explained by inertial particle dynamics
,” Geophys. Res. Lett.
47
, e2020GL089874
, https://doi.org/10.1029/2020GL089874 (2020
). 5.
E.
van Sebille
, M. H.
England
, and G.
Froyland
, “Origin, dynamics and evolution of ocean garbage patches from observed surface drifters
,” Environ. Res. Lett.
7
, 044040
(2012
). 6.
G.
Haller
, “Lagrangian coherent structures
,” Annu. Rev. Fluid Mech.
47
, 137
–162
(2015
). 7.
R.
Abernathey
and G.
Haller
, “Transport by Lagrangian vortices in the eastern Pacific
,” J. Phys. Oceanogr.
48
(3
), 667
–685
(2018
). 8.
D. B.
Chelton
, M. G.
Schlax
, R. M.
Samelson
, and R. A.
de Szoeke
, “Global observations of large oceanic eddies
,” Geophys. Res. Lett.
34
(15), L15606
, https://doi.org/10.1029/2007GL030812 (2007
). 9.
J. H.
Faghmous
, I.
Frenger
, Y.
Yao
, R.
Warmka
, A.
Lindell
, and V.
Kumar
, “A daily global mesoscale ocean eddy dataset from satellite altimetry
,” Sci. Data
2
, 1
–16
(2015
). 10.
M.
Lévy
, P. J.
Franks
, and K. S.
Smith
, “The role of submesoscale currents in structuring marine ecosystems
,” Nat. Commun.
9
, 4758
(2018
).11.
J. C.
McWilliams
, “Submesoscale currents in the ocean
,” Proc. R. Soc. A
472
, 20160117
(2016
). 12.
R.
Lumpkin
, “Global characteristics of coherent vortices from surface drifter trajectories
,” J. Geophys. Res.: Oceans
121
, 1306
–1321
, https://doi.org/10.1002/2015JC011435 (2016
). 13.
A.
Hadjighasem
, M.
Farazmand
, D.
Blazevski
, G.
Froyland
, and G.
Haller
, “A critical comparison of Lagrangian methods for coherent structure detection
,” Chaos
27
(5
), 053104
(2017
). 14.
G.
Froyland
and K.
Padberg-Gehle
, “A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data
,” Chaos
25
, 087406
(2015
). 15.
M.
Filippi
, I. I.
Rypina
, A.
Hadjighasem
, and T.
Peacock
, “An optimized-parameter spectral clustering approach to coherent structure detection in geophysical flows
,” Fluids
6
(1
), 39
(2021
). 16.
A.
Hadjighasem
, D.
Karrasch
, H.
Teramoto
, and G.
Haller
, “Spectral-clustering approach to Lagrangian vortex detection
,” Phys. Rev. E
93
, 063107
(2016
). 17.
K. L.
Schlueter-Kuck
and J. O.
Dabiri
, “Coherent structure colouring: Identification of coherent structures from sparse data using graph theory
,” J. Fluid Mech.
811
, 468
–486
(2017
). 18.
S.
Mowlavi
, M.
Serra
, E.
Maiorino
, and L.
Mahadevan
, “Detecting Lagrangian coherent structures from sparse and noisy trajectory data,” J. Fluid Mech.
948
, A4
(2022
).19.
A.
Provenzale
, “Transport by coherent barotropic vortices
,” Annu. Rev. Fluid Mech.
31
, 55
–93
(1999
).20.
A. M.
Mancho
, S.
Wiggins
, J.
Curbelo
, and C.
Mendoza
, “Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems
,” Commun. Nonlinear Sci. Numer. Simul.
18
, 3530
–3557
(2013
). 21.
C.
Mendoza
and A. M.
Mancho
, “Hidden geometry of ocean flows
,” Phys. Rev. Lett.
105
(3
), 038501
(2010
). 22.
B. L.
Sawford
, “Rotation of trajectories in Lagrangian stochastic models of turbulent dispersion
,” Boundary-Layer Meteorol.
93
, 411
–424
(1999
). 23.
R.
Mundel
, E.
Fredj
, H.
Gildor
, and V.
Rom-Kedar
, “New Lagrangian diagnostics for characterizing fluid flow mixing
,” Phys. Fluids
26
, 126602
(2014
).24.
I. I.
Rypina
, S. E.
Scott
, L. J.
Pratt
, and M. G.
Brown
, “Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures
,” Nonlinear Processes Geophys.
18
, 977
–987
(2011
). 25.
J. M.
Lilly
and S. C.
Olhede
, “Bivariate instantaneous frequency and bandwidth
,” IEEE Trans. Signal Process.
58
, 591
–603
(2009
). 26.
J. M.
Lilly
and S. C.
Olhede
, “On the analytic wavelet transform
,” IEEE Trans. Inf. Theory
56
(8
), 4135
–4156
(2010
). 27.
I. I.
Rypina
, T.
Getscher
, L. J.
Pratt
, and T.
Ozgokmen
, “Applying dynamical systems techniques to real ocean drifters
,” Nonlinear Processes Geophys.
29
(4
), 345
–361
(2022
). 28.
C.
Dong
, Y.
Liu
, R.
Lumpkin
, M.
Lankhorst
, D.
Chen
, J. C.
McWilliams
, and Y.
Guan
, “A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio Extension region
,” J. Atmos. Oceanic Technol.
28
, 1167
–1176
(2011
). 29.
A.
Griffa
, R.
Lumpkin
, and M.
Veneziani
, “Cyclonic and anticyclonic motion in the upper ocean
,” Geophys. Res. Lett.
35
, L01608
, https://doi.org/10.1029/2007GL032100 (2008
). 30.
M.
Veneziani
, A.
Griffa
, A. M.
Reynolds
, and A. J.
Mariano
, “Oceanic turbulence and stochastic models from subsurface Lagrangian data for the Northwest Atlantic Ocean
,” J. Phys. Oceanogr.
34
(8
), 1884
–1906
(2004
). 31.
J. M.
Lilly
and P.
Pérez-Brunius
, “Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico
,” Nonlinear Processes Geophys.
, 28
, 181
–212
(2021
).32.
G.
Haller
, N. O.
Aksamit
, and A. P.
Encinas-Bartos
, “Quasi-objective coherent structure diagnostics from single trajectories
,” Chaos
31
, 043131
(2021
). 33.
G.
Haller
, A.
Hadjighasem
, M.
Farazmand
, and F.
Huhn
, “Defining coherent vortices objectively from the vorticity
,” J. Fluid Mech.
795
, 136
–173
(2016
). 34.
M. J.
Olascoaga
, F. J.
Beron-Vera
, G.
Haller
, J.
Triñanes
, M.
Iskandarani
, E. F.
Coelho
, B. K.
Haus
, H. S.
Huntley
, G.
Jacobs
, A. D.
Kirwan
, and B. L.
Lipphardt
, “Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures
,” Geophys. Res. Lett.
40
, 6171
–6175
, https://doi.org/10.1002/2013GL058624 (2013
). 35.
M. J.
Olascoaga
and G.
Haller
, “Forecasting sudden changes in environmental pollution patterns
,” Proc. Natl. Acad. Sci.
109
, 4738
–4743
(2012
). 36.
See for “E.U. Copernicus Marine Service Information.”
37.
R. E.
Davis
, “Drifter observations of coastal surface currents during CODE: The method and descriptive view
,” J. Geophys. Res.: Oceans
90
, 4741
–4755
, https://doi.org/10.1029/JC090iC03p04741 (1985
). 38.
A. J.
Mariano
, E. H.
Ryan
, H. S.
Huntley
, L. C.
Laurindo
, E.
Coelho
, A.
Griffa
, and M.
Wei
, “Statistical properties of the surface velocity field in the northern Gulf of Mexico sampled by GLAD drifters
,” J. Geophys. Res.: Oceans
121
, 5193
–5216
, https://doi.org/10.1002/2015JC011569 (2016
). 39.
A. C.
Poje
, T. M.
Özgökmen
, B. L.
Lipphardt
, B. K.
Haus
, E. H.
Ryan
, A. C.
Haza
, and A. J.
Mariano
, “Submesoscale dispersion in the vicinity of the deepwater horizon spill
,” Proc. Natl. Acad. Sci.
111
(35
), 12693
–12698
(2014
). 40.
R.
Lumpkin
and M.
Pazos
, “Measuring surface currents with surface velocity program drifters: The instrument, its data, and some recent results
,” Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics
39
, 67
(2007
).41.
F. J.
Beron-Vera
and J. H.
LaCasce
, “Statistics of simulated and observed pair separations in the Gulf of Mexico
,” J. Phys. Oceanogr.
46
, 2183
–2199
(2016
). 42.
A.
Griffa
, “Applications of stochastic particle models to oceanographic problems,” in Stochastic Modelling in Physical Oceanography (Birkhäuser Boston, 1996), pp. 113–140.” 43.
T.
Rossby
, M.
Omand
, J.
Palter
, and D.
Hebert
, “On rates of isopycnal dispersion at the submesoscale
,” Geophys. Res. Lett.
48
, e2021GL093526
, https://doi.org/10.1029/2021GL093526 (2021
). 44.
M.
Berta
, A.
Griffa
, M. G.
Magaldi
, T. M.
Özgökmen
, A. C.
Poje
, A. C.
Haza
, and M. J.
Olascoaga
, “Improved surface velocity and trajectory estimates in the Gulf of Mexico from blended satellite altimetry and drifter data
,” J. Atmos. Oceanic Technol.
10
, 1880
–1901
(2015
). 45.
N.
Aksamit
, T.
Sapsis
, and G.
Haller
, “Machine-learning mesoscale and submesoscale surface dynamics from Lagrangian ocean drifter trajectories
,” J. Phys. Oceanogr.
50
, 1179
–1196
(2020
). 46.
G.
Haller
, N. O.
Aksamit
, and A. P.
Encinas-Bartos
, “Erratum: `Quasi-objective coherent structure diagnostics from single trajectories' [Chaos 31, 043131 (2021)],” Chaos
32
(5), 059901
(2022
).47.
R.
Lumpkin
, A. M.
Treguier
, and K.
Speer
, “Lagrangian eddy scales in the northern Atlantic Ocean
,” J. Phys. Oceanogr.
32
(9
), 2425
–2440
(2002
). 48.
T. G.
Shepherd
, J. N.
Koshyk
, and K.
Ngan
, “On the nature of large-scale mixing in the stratosphere and mesosphere
,” J. Geophys. Res.: Atmos.
105
(D10
), 12433
–12446
, https://doi.org/10.1029/2000JD900133 (2000
). 49.
F. J.
Beron-Vera
, A.
Hadjighasem
, Q.
Xia
, M. J.
Olascoaga
, and G.
Haller
, “Coherent Lagrangian swirls among submesoscale motions
,” Proc. Natl. Acad. Sci.
116
, 18251
–18256
(2019
). 50.
G.
Haller
, “Dynamically consistent rotation and stretch tensors from a dynamic polar decomposition
,” J. Mech. Phys. Solids
80
, 70
–93
(2016
). 51.
A.
Ruiz-Herrera
, “Some examples related to the method of Lagrangian descriptors
,” Chaos
25
(6
), 063112
(2015
). 52.
A.
Ruiz-Herrera
, “Performance of Lagrangian descriptors and their variants in incompressible flows
,” Chaos
26
(10
), 103116
(2016
). 53.
C.
Mendoza
, A. M.
Mancho
, and S.
Wiggins
, “Lagrangian descriptors and the assessment of the predictive capacity of oceanic data sets
,” Nonlinear Processes Geophys.
21
(3
), 677
–689
(2014
). 54.
F. J.
Beron-Vera
and P.
Miron
, “A minimal Maxey-Riley model for the drift of Sargassum rafts
,” J. Fluid Mech.
904
, A8
(2020
). 55.
R.
Lguensat
, M.
Sun
, R.
Fablet
, P.
Tandeo
, E.
Mason
, and G.
Chen
, EddyNet: “A deep neural network for pixel-wise classification of oceanic eddies,” in IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2018), pp. 1764–1767.56.
M.
Farazmand
and G.
Haller
, “Computing Lagrangian coherent structures from their variational theory
,” Chaos
22
, 013128
(2012
). 57.
O. R.
Southwick
, E. R.
Johnson
, and N. R.
McDonald
, “A simple model for sheddies: Ocean eddies formed from shed vorticity
,” J. Phys. Oceanogr.
46
, 2961
–2979
(2016
). 58.
O. R.
Southwick
, E. R.
Johnson
, and N. R.
McDonald
, “Potential vorticity dynamics of coastal outflows
,” J. Phys. Oceanogr.
47
, 1021
–1041
(2017
). 59.
R.
Lumpkin
and G. C.
Johnson
, “Global ocean surface velocities from drifters: Mean, variance, El Niño-Southern Oscillation response, and seasonal cycle
,” J. Geophys. Res.: Oceans
118
(6
), 2992
–3006
, https://doi.org/10.1002/jgrc.20210 (2013
). 60.
P. L.
Richardson
, “Eddy kinetic energy in the North Atlantic from surface drifters
,” J. Geophys. Res.: Oceans
88
(C7
), 4355
–4367
, https://doi.org/10.1029/JC088iC07p04355 (1983
). 61.
J.
Martínez-Moreno
, A. M.
Hogg
, A. E.
Kiss
, N. C.
Constantinou
, and A. K.
Morrison
, “Kinetic energy of eddy-like features from sea surface altimetry
,” J. Adv. Model. Earth Syst.
11
(10
), 3090
–3105
(2019
).62.
D.
Kang
and E. N.
Curchitser
, “Gulf Stream eddy characteristics in a high-resolution ocean model
,” J. Geophys. Res.: Oceans
118
, 4474
–4487
, https://doi.org/10.1002/jgrc.20318 (2013
). 63.
P. L.
Richardson
, A. E.
Strong
, and J. A.
Knauss
, “Gulf Stream eddies: Recent observations in the western Sargasso Sea
,” J. Phys. Oceanogr.
3
, 297
–301
(1973
). 64.
C. E.
Binding
, T. A.
Greenberg
, and R. P.
Bukata
, “The MERIS maximum chlorophyll index; its merits and limitations for inland water algal bloom monitoring
,” J. Great Lakes Res.
39
, 100
–107
(2013
). 65.
N.
Tarshish
, R.
Abernathey
, C.
Zhang
, C. O.
Dufour
, I.
Frenger
, and S. M.
Griffies
, “Identifying Lagrangian coherent vortices in a mesoscale ocean model
,” Ocean Modell.
130
, 15
–28
(2018
). 66.
R.
Lumpkin
and L.
Centurioni
, “Global drifter program quality controlled 6-hour interpolated data from ocean surface drifting buoys,” NOAA National Centers for Environmental Information, 2019.67.
T.
Özgökmen
, GLAD experiment CODE-style drifter trajectories (low-pass filtered, 15 min interval records), northern Gulf of Mexico near DeSoto Canyon, July–October 2012. Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University-Corpus Christi (2013).68.
M. O.
Williams
, I. I.
Rypina
, and C. W.
Rowley
, “Identifying finite-time coherent sets from limited quantities of Lagrangian data
,” Chaos
25
, 087408
(2015
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.