Though synchronization of complex dynamical systems has been widely studied in the past few decades, few studies pay attention to the impact of network parameters on synchronization in hypernetworks. In this paper, we focus on a specific hypernetwork model consisting of coupled Rössler oscillators and investigate the impact of inner-coupling and time delay on the synchronized region (SR). For the sake of simplicity, the inner-coupling matrix is chosen from three typical forms, which result in classical bounded, unbounded, and empty SR in a single-layer network, respectively. The impact of inner-couplings or time delays on unbounded SR is the most interesting one among the three types of SR. Once the SR of one subnetwork is unbounded, the SR of the whole hypernetwork is also unbounded with a different inner-coupling matrix. In a hypernetwork with unbounded SR, the time delays change not only the size but also the type of SR. In a hypernetwork with bounded or empty SR, the time delays have almost no effect on the type of SR.

1.
B.
Danila
,
Y.
Yu
,
J. A.
Marsh
, and
K. E.
Bassler
, “
Transport optimization on complex networks
,”
Chaos
17
,
026102
(
2007
).
2.
J.
Zhou
,
J.
Chen
,
J.
Lu
, and
J.
, “
On applicability of auxiliary system approach to detect generalized synchronization in complex network
,”
IEEE Trans. Autom. Control
62
,
3468
3473
(
2016
).
3.
S.
Zhu
,
J.
Zhou
,
G.
Chen
, and
J.
Lu
, “
Estimating the region of attraction on a complex dynamical network
,”
SIAM J. Control Optim.
57
,
1189
1208
(
2019
).
4.
S.
Zhu
,
J.
Zhou
,
J.
, and
J.
Lu
, “
Finite-time synchronization of impulsive dynamical networks with strong nonlinearity
,”
IEEE Trans. Autom. Control
66
,
3550
3561
(
2020
).
5.
W.
Xiong
,
D. W.
Ho
, and
S.
Wen
, “
A periodic iterative learning scheme for finite-iteration tracking of discrete networks based on FlexRay communication protocol
,”
Inf. Sci.
548
,
344
356
(
2021
).
6.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I.
Del Genio
,
J.
Gómez-Gardenes
,
M.
Romance
,
I.
Sendina-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
7.
M.
De Domenico
,
C.
Granell
,
M. A.
Porter
, and
A.
Arenas
, “
The physics of spreading processes in multilayer networks
,”
Nat. Phys.
12
,
901
906
(
2016
).
8.
G.
Li
,
N.
Li
,
S.
Liu
, and
X.
Wu
, “
Compressive sensing-based topology identification of multilayer networks
,”
Chaos
29
,
053117
(
2019
).
9.
L.
Tang
,
J.
Lu
, and
J.
, “
A threshold effect of coupling delays on intra-layer synchronization in duplex networks
,”
Sci. China Technol. Sci.
61
,
1907
1914
(
2018
).
10.
X.
Wu
,
Q.
Li
,
C.
Liu
,
J.
Liu
, and
C.
Xie
, “
Synchronization in duplex networks of coupled Rössler oscillators with different inner-coupling matrices
,”
Neurocomputing
408
,
31
41
(
2020
).
11.
C.
Granell
,
S.
Gómez
, and
A.
Arenas
, “
Dynamical interplay between awareness and epidemic spreading in multiplex networks
,”
Phys. Rev. L
111
,
128701
(
2013
).
12.
S.
Gómez
,
A.
Díaz-Guilera
,
J.
Gómez-Gardenes
,
C. J.
Péerez-Vicente
,
Y.
Moreno
, and
A.
Arenas
, “
Diffusion dynamics on multiplex networks
,”
Phys. Rev. L
110
,
028701
(
2013
).
13.
F.
Sorrentino
, “
Synchronization of hypernetworks of coupled dynamical systems
,”
New J. Phys.
14
,
033035
(
2012
).
14.
D.
Irving
and
F.
Sorrentino
, “
Synchronization of dynamical hypernetworks: Dimensionality reduction through simultaneous block-diagonalization of matrices
,”
Phys. Rev. E
86
,
056102
(
2012
).
15.
S.
Bilal
and
R.
Ramaswamy
, “
Synchronization and amplitude death in hypernetworks
,”
Phys. Rev. E
89
,
062923
(
2014
).
16.
N.
Abaid
and
M.
Porfiri
, “
Fish in a ring: Spatio-temporal pattern formation in one-dimensional animal groups
,”
J. R. Soc. Interface
7
,
1441
1453
(
2010
).
17.
A. E.
Pereda
, “
Electrical synapses and their functional interactions with chemical synapses
,”
Nat. Rev. Neurosci.
15
,
250
263
(
2014
).
18.
S.
Havlin
,
N.
Araujo
,
S. V.
Buldyrev
,
C.
Dias
,
R.
Parshani
,
G.
Paul
, and
H. E.
Stanley
, “Catastrophic cascade of failures in interdependent networks,” in Complex Materials in Physics and Biology (IOS Press, 2012), pp. 311–324.
19.
C.
Zhou
,
L.
Zemanová
,
G.
Zamora
,
C. C.
Hilgetag
, and
J.
Kurths
, “
Hierarchical organization unveiled by functional connectivity in complex brain networks
,”
Phys. Rev. L
97
,
238103
(
2006
).
20.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. L
76
,
1804
(
1996
).
21.
V. N.
Belykh
,
I. V.
Belykh
, and
E.
Mosekilde
, “
Cluster synchronization modes in an ensemble of coupled chaotic oscillators
,”
Phys. Rev. E
63
,
036216
(
2001
).
22.
H.
Fujisaka
and
T.
Yamada
, “
Stability theory of synchronized motion in coupled-oscillator systems
,”
Prog. Theor. Phys.
69
,
32
47
(
1983
).
23.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. L
64
,
821
(
1990
).
24.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. L
80
,
2109
(
1998
).
25.
L.
Huang
,
Q.
Chen
,
Y.-C.
Lai
, and
L. M.
Pecora
, “
Generic behavior of master-stability functions in coupled nonlinear dynamical systems
,”
Phys. Rev. E
80
,
036204
(
2009
).
26.
S.
Zhu
,
J.
Zhou
,
X.
Yu
, and
J.
Lu
, “
Synchronization of complex networks with nondifferentiable time-varying delay
,”
IEEE Trans. Cybern.
52
,
3342
3348
(
2022
).
27.
J.
Chen
,
J.
Lu
, and
J.
Zhou
, “
On the relationship between the synchronous state and the solution of an isolated node in a complex network
,”
Acta Autom. Sin.
39
,
2111
2120
(
2013
).
28.
C. I.
Del Genio
,
J.
Gómez-Gardeñes
,
I.
Bonamassa
, and
S.
Boccaletti
, “
Synchronization in networks with multiple interaction layers
,”
Sci. Adv.
2
,
e1601679
(
2016
).
29.
L. V.
Gambuzza
,
F.
Di Patti
,
L.
Gallo
,
S.
Lepri
,
M.
Romance
,
R.
Criado
,
M.
Frasca
,
V.
Latora
, and
S.
Boccaletti
, “
Stability of synchronization in simplicial complexes
,”
Nat. Commun.
12
,
1255
(
2021
).
You do not currently have access to this content.